MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval Unicode version

Theorem comfffval 13601
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o  |-  O  =  (compf `  C )
comfffval.b  |-  B  =  ( Base `  C
)
comfffval.h  |-  H  =  (  Hom  `  C
)
comfffval.x  |-  .x.  =  (comp `  C )
Assertion
Ref Expression
comfffval  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Distinct variable groups:    x, y, B    f, g, x, y, C    .x. , f, g, x   
f, H, g, x
Allowed substitution hints:    B( f, g)    .x. ( y)    H( y)    O( x, y, f, g)

Proof of Theorem comfffval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 comfffval.o . 2  |-  O  =  (compf `  C )
2 fveq2 5525 . . . . . . 7  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
3 comfffval.b . . . . . . 7  |-  B  =  ( Base `  C
)
42, 3syl6eqr 2333 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  B )
54, 4xpeq12d 4714 . . . . 5  |-  ( c  =  C  ->  (
( Base `  c )  X.  ( Base `  c
) )  =  ( B  X.  B ) )
6 fveq2 5525 . . . . . . . 8  |-  ( c  =  C  ->  (  Hom  `  c )  =  (  Hom  `  C
) )
7 comfffval.h . . . . . . . 8  |-  H  =  (  Hom  `  C
)
86, 7syl6eqr 2333 . . . . . . 7  |-  ( c  =  C  ->  (  Hom  `  c )  =  H )
98oveqd 5875 . . . . . 6  |-  ( c  =  C  ->  (
( 2nd `  x
) (  Hom  `  c
) y )  =  ( ( 2nd `  x
) H y ) )
108fveq1d 5527 . . . . . 6  |-  ( c  =  C  ->  (
(  Hom  `  c ) `
 x )  =  ( H `  x
) )
11 fveq2 5525 . . . . . . . . 9  |-  ( c  =  C  ->  (comp `  c )  =  (comp `  C ) )
12 comfffval.x . . . . . . . . 9  |-  .x.  =  (comp `  C )
1311, 12syl6eqr 2333 . . . . . . . 8  |-  ( c  =  C  ->  (comp `  c )  =  .x.  )
1413oveqd 5875 . . . . . . 7  |-  ( c  =  C  ->  (
x (comp `  c
) y )  =  ( x  .x.  y
) )
1514oveqd 5875 . . . . . 6  |-  ( c  =  C  ->  (
g ( x (comp `  c ) y ) f )  =  ( g ( x  .x.  y ) f ) )
169, 10, 15mpt2eq123dv 5910 . . . . 5  |-  ( c  =  C  ->  (
g  e.  ( ( 2nd `  x ) (  Hom  `  c
) y ) ,  f  e.  ( (  Hom  `  c ) `  x )  |->  ( g ( x (comp `  c ) y ) f ) )  =  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
175, 4, 16mpt2eq123dv 5910 . . . 4  |-  ( c  =  C  ->  (
x  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( ( 2nd `  x
) (  Hom  `  c
) y ) ,  f  e.  ( (  Hom  `  c ) `  x )  |->  ( g ( x (comp `  c ) y ) f ) ) )  =  ( x  e.  ( B  X.  B
) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
18 df-comf 13573 . . . 4  |- compf  =  ( c  e. 
_V  |->  ( x  e.  ( ( Base `  c
)  X.  ( Base `  c ) ) ,  y  e.  ( Base `  c )  |->  ( g  e.  ( ( 2nd `  x ) (  Hom  `  c ) y ) ,  f  e.  ( (  Hom  `  c
) `  x )  |->  ( g ( x (comp `  c )
y ) f ) ) ) )
19 fvex 5539 . . . . . . 7  |-  ( Base `  C )  e.  _V
203, 19eqeltri 2353 . . . . . 6  |-  B  e. 
_V
2120, 20xpex 4801 . . . . 5  |-  ( B  X.  B )  e. 
_V
2221, 20mpt2ex 6198 . . . 4  |-  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) )  e.  _V
2317, 18, 22fvmpt 5602 . . 3  |-  ( C  e.  _V  ->  (compf `  C
)  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) ) )
24 fvprc 5519 . . . 4  |-  ( -.  C  e.  _V  ->  (compf `  C )  =  (/) )
25 fvprc 5519 . . . . . . . . 9  |-  ( -.  C  e.  _V  ->  (
Base `  C )  =  (/) )
263, 25syl5eq 2327 . . . . . . . 8  |-  ( -.  C  e.  _V  ->  B  =  (/) )
2726xpeq2d 4713 . . . . . . 7  |-  ( -.  C  e.  _V  ->  ( B  X.  B )  =  ( B  X.  (/) ) )
28 xp0 5098 . . . . . . 7  |-  ( B  X.  (/) )  =  (/)
2927, 28syl6eq 2331 . . . . . 6  |-  ( -.  C  e.  _V  ->  ( B  X.  B )  =  (/) )
30 mpt2eq12 5908 . . . . . 6  |-  ( ( ( B  X.  B
)  =  (/)  /\  B  =  (/) )  ->  (
x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
3129, 26, 30syl2anc 642 . . . . 5  |-  ( -.  C  e.  _V  ->  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
32 mpt20 6199 . . . . 5  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )  =  (/)
3331, 32syl6eq 2331 . . . 4  |-  ( -.  C  e.  _V  ->  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  (/) )
3424, 33eqtr4d 2318 . . 3  |-  ( -.  C  e.  _V  ->  (compf `  C )  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) ) )
3523, 34pm2.61i 156 . 2  |-  (compf `  C
)  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) )
361, 35eqtri 2303 1  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455    X. cxp 4687   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   2ndc2nd 6121   Basecbs 13148    Hom chom 13219  compcco 13220  compfccomf 13569
This theorem is referenced by:  comffval  13602  comfffval2  13604  comfffn  13607  comfeq  13609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-comf 13573
  Copyright terms: Public domain W3C validator