MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval2 Structured version   Unicode version

Theorem comfffval2 13919
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o  |-  O  =  (compf `  C )
comfffval2.b  |-  B  =  ( Base `  C
)
comfffval2.h  |-  H  =  (  Homf 
`  C )
comfffval2.x  |-  .x.  =  (comp `  C )
Assertion
Ref Expression
comfffval2  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Distinct variable groups:    f, g, x, y, B    C, f,
g, x, y    .x. , f,
g, x
Allowed substitution hints:    .x. ( y)    H( x, y, f, g)    O( x, y, f, g)

Proof of Theorem comfffval2
StepHypRef Expression
1 comfffval2.o . . 3  |-  O  =  (compf `  C )
2 comfffval2.b . . 3  |-  B  =  ( Base `  C
)
3 eqid 2435 . . 3  |-  (  Hom  `  C )  =  (  Hom  `  C )
4 comfffval2.x . . 3  |-  .x.  =  (comp `  C )
51, 2, 3, 4comfffval 13916 . 2  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) (  Hom  `  C
) y ) ,  f  e.  ( (  Hom  `  C ) `  x )  |->  ( g ( x  .x.  y
) f ) ) )
6 comfffval2.h . . . . 5  |-  H  =  (  Homf 
`  C )
7 xp2nd 6369 . . . . . 6  |-  ( x  e.  ( B  X.  B )  ->  ( 2nd `  x )  e.  B )
87adantr 452 . . . . 5  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( 2nd `  x
)  e.  B )
9 simpr 448 . . . . 5  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  y  e.  B )
106, 2, 3, 8, 9homfval 13910 . . . 4  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( ( 2nd `  x
) H y )  =  ( ( 2nd `  x ) (  Hom  `  C ) y ) )
11 xp1st 6368 . . . . . . . 8  |-  ( x  e.  ( B  X.  B )  ->  ( 1st `  x )  e.  B )
1211adantr 452 . . . . . . 7  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( 1st `  x
)  e.  B )
136, 2, 3, 12, 8homfval 13910 . . . . . 6  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( ( 1st `  x
) H ( 2nd `  x ) )  =  ( ( 1st `  x
) (  Hom  `  C
) ( 2nd `  x
) ) )
14 df-ov 6076 . . . . . 6  |-  ( ( 1st `  x ) H ( 2nd `  x
) )  =  ( H `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
15 df-ov 6076 . . . . . 6  |-  ( ( 1st `  x ) (  Hom  `  C
) ( 2nd `  x
) )  =  ( (  Hom  `  C
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
1613, 14, 153eqtr3g 2490 . . . . 5  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( H `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )  =  ( (  Hom  `  C
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
17 1st2nd2 6378 . . . . . . 7  |-  ( x  e.  ( B  X.  B )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
1817adantr 452 . . . . . 6  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
1918fveq2d 5724 . . . . 5  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( H `  x
)  =  ( H `
 <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
)
2018fveq2d 5724 . . . . 5  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( (  Hom  `  C
) `  x )  =  ( (  Hom  `  C ) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
2116, 19, 203eqtr4d 2477 . . . 4  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( H `  x
)  =  ( (  Hom  `  C ) `  x ) )
22 eqidd 2436 . . . 4  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( g ( x 
.x.  y ) f )  =  ( g ( x  .x.  y
) f ) )
2310, 21, 22mpt2eq123dv 6128 . . 3  |-  ( ( x  e.  ( B  X.  B )  /\  y  e.  B )  ->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) )  =  ( g  e.  ( ( 2nd `  x ) (  Hom  `  C
) y ) ,  f  e.  ( (  Hom  `  C ) `  x )  |->  ( g ( x  .x.  y
) f ) ) )
2423mpt2eq3ia 6131 . 2  |-  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) )  =  ( x  e.  ( B  X.  B
) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) (  Hom  `  C
) y ) ,  f  e.  ( (  Hom  `  C ) `  x )  |->  ( g ( x  .x.  y
) f ) ) )
255, 24eqtr4i 2458 1  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809    X. cxp 4868   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340   Basecbs 13461    Hom chom 13532  compcco 13533    Homf chomf 13883  compfccomf 13884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-homf 13887  df-comf 13888
  Copyright terms: Public domain W3C validator