Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  comppfsc Unicode version

Theorem comppfsc 26307
Description: A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
comppfsc.1  |-  X  = 
U. J
Assertion
Ref Expression
comppfsc  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) ) )
Distinct variable groups:    c, d, J    X, c, d

Proof of Theorem comppfsc
Dummy variables  a 
b  f  p  q  s  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 3633 . . . 4  |-  ( c  e.  ~P J  -> 
c  C_  J )
2 comppfsc.1 . . . . . . 7  |-  X  = 
U. J
32cmpcov 17116 . . . . . 6  |-  ( ( J  e.  Comp  /\  c  C_  J  /\  X  = 
U. c )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)
4 elfpw 7157 . . . . . . . 8  |-  ( d  e.  ( ~P c  i^i  Fin )  <->  ( d  C_  c  /\  d  e. 
Fin ) )
5 finptfin 26297 . . . . . . . . . . 11  |-  ( d  e.  Fin  ->  d  e.  PtFin )
65anim1i 551 . . . . . . . . . 10  |-  ( ( d  e.  Fin  /\  ( d  C_  c  /\  X  =  U. d ) )  -> 
( d  e.  PtFin  /\  ( d  C_  c  /\  X  =  U. d ) ) )
76anassrs 629 . . . . . . . . 9  |-  ( ( ( d  e.  Fin  /\  d  C_  c )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
87ancom1s 780 . . . . . . . 8  |-  ( ( ( d  C_  c  /\  d  e.  Fin )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
94, 8sylanb 458 . . . . . . 7  |-  ( ( d  e.  ( ~P c  i^i  Fin )  /\  X  =  U. d )  ->  (
d  e.  PtFin  /\  (
d  C_  c  /\  X  =  U. d
) ) )
109reximi2 2649 . . . . . 6  |-  ( E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) )
113, 10syl 15 . . . . 5  |-  ( ( J  e.  Comp  /\  c  C_  J  /\  X  = 
U. c )  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )
12113exp 1150 . . . 4  |-  ( J  e.  Comp  ->  ( c 
C_  J  ->  ( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) ) ) )
131, 12syl5 28 . . 3  |-  ( J  e.  Comp  ->  ( c  e.  ~P J  -> 
( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) ) ) )
1413ralrimiv 2625 . 2  |-  ( J  e.  Comp  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) )
15 elpwi 3633 . . . . . . 7  |-  ( a  e.  ~P J  -> 
a  C_  J )
16 0elpw 4180 . . . . . . . . . . 11  |-  (/)  e.  ~P a
17 0fin 7087 . . . . . . . . . . 11  |-  (/)  e.  Fin
18 elin 3358 . . . . . . . . . . 11  |-  ( (/)  e.  ( ~P a  i^i 
Fin )  <->  ( (/)  e.  ~P a  /\  (/)  e.  Fin )
)
1916, 17, 18mpbir2an 886 . . . . . . . . . 10  |-  (/)  e.  ( ~P a  i^i  Fin )
20 unieq 3836 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  U. b  =  U. (/) )
21 uni0 3854 . . . . . . . . . . . . 13  |-  U. (/)  =  (/)
2220, 21syl6eq 2331 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  U. b  =  (/) )
2322eqeq2d 2294 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( X  =  U. b  <->  X  =  (/) ) )
2423rspcev 2884 . . . . . . . . . 10  |-  ( (
(/)  e.  ( ~P a  i^i  Fin )  /\  X  =  (/) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)
2519, 24mpan 651 . . . . . . . . 9  |-  ( X  =  (/)  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )
2625a1i13 26200 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( X  =  (/)  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
27 n0 3464 . . . . . . . . 9  |-  ( X  =/=  (/)  <->  E. x  x  e.  X )
28 simp2 956 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  X  =  U. a )
2928eleq2d 2350 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  <->  x  e.  U. a
) )
3029biimpd 198 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  x  e.  U. a ) )
31 eluni2 3831 . . . . . . . . . . . 12  |-  ( x  e.  U. a  <->  E. s  e.  a  x  e.  s )
3230, 31syl6ib 217 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  E. s  e.  a  x  e.  s ) )
33 simpl3 960 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
a  C_  J )
34 simprl 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  a )
3533, 34sseldd 3181 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  J )
36 elssuni 3855 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  e.  J  ->  s  C_ 
U. J )
3736, 2syl6sseqr 3225 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  e.  J  ->  s  C_  X )
3835, 37syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  C_  X )
3938ralrimivw 2627 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. p  e.  a 
s  C_  X )
40 iunss 3943 . . . . . . . . . . . . . . . . . . 19  |-  ( U_ p  e.  a  s  C_  X  <->  A. p  e.  a  s  C_  X )
4139, 40sylibr 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  U_ p  e.  a 
s  C_  X )
42 ssequn1 3345 . . . . . . . . . . . . . . . . . 18  |-  ( U_ p  e.  a  s  C_  X  <->  ( U_ p  e.  a  s  u.  X )  =  X )
4341, 42sylib 188 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( U_ p  e.  a  s  u.  X )  =  X )
44 simpl2 959 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U. a
)
45 uniiun 3955 . . . . . . . . . . . . . . . . . . 19  |-  U. a  =  U_ p  e.  a  p
4644, 45syl6eq 2331 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U_ p  e.  a  p )
4746uneq2d 3329 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( U_ p  e.  a  s  u.  X )  =  ( U_ p  e.  a  s  u.  U_ p  e.  a  p ) )
4843, 47eqtr3d 2317 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  ( U_ p  e.  a  s  u.  U_ p  e.  a  p ) )
49 iunun 3982 . . . . . . . . . . . . . . . . 17  |-  U_ p  e.  a  ( s  u.  p )  =  (
U_ p  e.  a  s  u.  U_ p  e.  a  p )
50 vex 2791 . . . . . . . . . . . . . . . . . . 19  |-  s  e. 
_V
51 vex 2791 . . . . . . . . . . . . . . . . . . 19  |-  p  e. 
_V
5250, 51unex 4518 . . . . . . . . . . . . . . . . . 18  |-  ( s  u.  p )  e. 
_V
5352dfiun3 4933 . . . . . . . . . . . . . . . . 17  |-  U_ p  e.  a  ( s  u.  p )  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )
5449, 53eqtr3i 2305 . . . . . . . . . . . . . . . 16  |-  ( U_ p  e.  a  s  u.  U_ p  e.  a  p )  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )
5548, 54syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  X  =  U. ran  (
p  e.  a  |->  ( s  u.  p ) ) )
56 simpll1 994 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  J  e.  Top )
5735adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  s  e.  J )
5833sselda 3180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  p  e.  J )
59 unopn 16649 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  Top  /\  s  e.  J  /\  p  e.  J )  ->  ( s  u.  p
)  e.  J )
6056, 57, 58, 59syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  p  e.  a )  ->  (
s  u.  p )  e.  J )
61 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  a  |->  ( s  u.  p ) )  =  ( p  e.  a  |->  ( s  u.  p ) )
6260, 61fmptd 5684 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( p  e.  a 
|->  ( s  u.  p
) ) : a --> J )
63 frn 5395 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  a  |->  ( s  u.  p ) ) : a --> J  ->  ran  ( p  e.  a  |->  ( s  u.  p ) ) 
C_  J )
6462, 63syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  C_  J
)
65 elpw2g 4174 . . . . . . . . . . . . . . . . . . 19  |-  ( J  e.  Top  ->  ( ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J 
<->  ran  ( p  e.  a  |->  ( s  u.  p ) )  C_  J ) )
66653ad2ant1 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( ran  (
p  e.  a  |->  ( s  u.  p ) )  e.  ~P J  <->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  C_  J
) )
6766adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( ran  ( p  e.  a  |->  ( s  u.  p ) )  e.  ~P J  <->  ran  ( p  e.  a  |->  ( s  u.  p ) ) 
C_  J ) )
6864, 67mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J )
69 unieq 3836 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  U. c  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) ) )
7069eqeq2d 2294 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( X  = 
U. c  <->  X  =  U. ran  ( p  e.  a  |->  ( s  u.  p ) ) ) )
71 sseq2 3200 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( d  C_  c 
<->  d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) ) ) )
7271anbi1d 685 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( ( d 
C_  c  /\  X  =  U. d )  <->  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) ) )
7372rexbidv 2564 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d )  <->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d ) ) )
7470, 73imbi12d 311 . . . . . . . . . . . . . . . . 17  |-  ( c  =  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  <-> 
( X  =  U. ran  ( p  e.  a 
|->  ( s  u.  p
) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d ) ) ) )
7574rspcv 2880 . . . . . . . . . . . . . . . 16  |-  ( ran  ( p  e.  a 
|->  ( s  u.  p
) )  e.  ~P J  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  ( X  = 
U. ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) ) )
7668, 75syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  ( X  = 
U. ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) ) )
7755, 76mpid 37 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. d  e.  PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d ) ) )
78 simprr 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  s )
79 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( a  C_  J  /\  s  e.  a )  ->  s  e.  J )
80793ad2antl3 1119 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  s  e.  a )  ->  s  e.  J )
8180adantrr 697 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
s  e.  J )
82 elunii 3832 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  s  /\  s  e.  J )  ->  x  e.  U. J
)
8378, 81, 82syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  U. J )
8483, 2syl6eleqr 2374 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  X )
8584adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  x  e.  X )
86 simprr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  X  =  U. d )
8785, 86eleqtrd 2359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  x  e.  U. d )
88 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  U. d  =  U. d
8988ptfinfin 26298 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  e.  PtFin  /\  x  e.  U. d )  ->  { z  e.  d  |  x  e.  z }  e.  Fin )
9089expcom 424 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  U. d  -> 
( d  e.  PtFin  ->  { z  e.  d  |  x  e.  z }  e.  Fin )
)
9187, 90syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  PtFin  ->  { z  e.  d  |  x  e.  z }  e.  Fin ) )
92 simprl 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) ) )
93 elun1 3342 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  s  ->  x  e.  ( s  u.  p
) )
9493ad2antll 709 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  x  e.  ( s  u.  p ) )
9594ralrimivw 2627 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. p  e.  a  x  e.  ( s  u.  p ) )
9652rgenw 2610 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  A. p  e.  a  ( s  u.  p )  e.  _V
97 eleq2 2344 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  ( s  u.  p )  ->  (
x  e.  z  <->  x  e.  ( s  u.  p
) ) )
9861, 97ralrnmpt 5669 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. p  e.  a  (
s  u.  p )  e.  _V  ->  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p
) ) x  e.  z  <->  A. p  e.  a  x  e.  ( s  u.  p ) ) )
9996, 98ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z  <->  A. p  e.  a  x  e.  ( s  u.  p
) )
10095, 99sylibr 203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  ->  A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p
) ) x  e.  z )
101100adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z )
102 ssralv 3237 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d 
C_  ran  ( p  e.  a  |->  ( s  u.  p ) )  ->  ( A. z  e.  ran  ( p  e.  a  |->  ( s  u.  p ) ) x  e.  z  ->  A. z  e.  d  x  e.  z ) )
10392, 101, 102sylc 56 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. z  e.  d  x  e.  z )
104 rabid2 2717 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  =  { z  e.  d  |  x  e.  z }  <->  A. z  e.  d  x  e.  z )
105103, 104sylibr 203 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  =  { z  e.  d  |  x  e.  z } )
106105eleq1d 2349 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  <->  { z  e.  d  |  x  e.  z }  e.  Fin ) )
107106biimprd 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  ( { z  e.  d  |  x  e.  z }  e.  Fin  ->  d  e.  Fin ) )
10861rnmpt 4925 . . . . . . . . . . . . . . . . . . . . . 22  |-  ran  (
p  e.  a  |->  ( s  u.  p ) )  =  { q  |  E. p  e.  a  q  =  ( s  u.  p ) }
10992, 108syl6sseq 3224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  d  C_ 
{ q  |  E. p  e.  a  q  =  ( s  u.  p ) } )
110 ssabral 3244 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d 
C_  { q  |  E. p  e.  a  q  =  ( s  u.  p ) }  <->  A. q  e.  d  E. p  e.  a 
q  =  ( s  u.  p ) )
111109, 110sylib 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p
) )
112 uneq2 3323 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  =  ( f `  q )  ->  (
s  u.  p )  =  ( s  u.  ( f `  q
) ) )
113112eqeq2d 2294 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  =  ( f `  q )  ->  (
q  =  ( s  u.  p )  <->  q  =  ( s  u.  (
f `  q )
) ) )
114113ac6sfi 7101 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  e.  Fin  /\  A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p ) )  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) )
115114expcom 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. q  e.  d  E. p  e.  a  q  =  ( s  u.  p )  ->  (
d  e.  Fin  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) ) )
116111, 115syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) ) ) )
117 frn 5395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : d --> a  ->  ran  f  C_  a )
118117adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `
 q ) ) )  ->  ran  f  C_  a )
119118ad2antll 709 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  C_  a )
12034ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  s  e.  a )
121120snssd 3760 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  { s } 
C_  a )
122119, 121unssd 3351 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } ) 
C_  a )
123 simprl 732 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  d  e.  Fin )
124 simprrl 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f : d --> a )
125 ffn 5389 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : d --> a  -> 
f  Fn  d )
126124, 125syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f  Fn  d
)
127 dffn4 5457 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f  Fn  d  <->  f :
d -onto-> ran  f )
128126, 127sylib 188 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  f : d
-onto->
ran  f )
129 fofi 7142 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( d  e.  Fin  /\  f : d -onto-> ran  f
)  ->  ran  f  e. 
Fin )
130123, 128, 129syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  e.  Fin )
131 snfi 6941 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  { s }  e.  Fin
132 unfi 7124 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ran  f  e.  Fin  /\ 
{ s }  e.  Fin )  ->  ( ran  f  u.  { s } )  e.  Fin )
133130, 131, 132sylancl 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } )  e.  Fin )
134 elfpw 7157 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ran  f  u.  {
s } )  e.  ( ~P a  i^i 
Fin )  <->  ( ( ran  f  u.  { s } )  C_  a  /\  ( ran  f  u. 
{ s } )  e.  Fin ) )
135122, 133, 134sylanbrc 645 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } )  e.  ( ~P a  i^i  Fin ) )
136 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U. d )
137 uniiun 3955 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  U. d  =  U_ q  e.  d  q
138 simprrr 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  A. q  e.  d  q  =  ( s  u.  ( f `  q ) ) )
139 iuneq2 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. q  e.  d  q  =  ( s  u.  ( f `  q
) )  ->  U_ q  e.  d  q  =  U_ q  e.  d  ( s  u.  ( f `
 q ) ) )
140138, 139syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U_ q  e.  d  q  =  U_ q  e.  d  ( s  u.  ( f `  q
) ) )
141137, 140syl5eq 2327 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U. d  =  U_ q  e.  d  (
s  u.  ( f `
 q ) ) )
142136, 141eqtrd 2315 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U_ q  e.  d  (
s  u.  ( f `
 q ) ) )
143 ssun2 3339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  { s }  C_  ( ran  f  u.  { s } )
14450snid 3667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  s  e. 
{ s }
145143, 144sselii 3177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  s  e.  ( ran  f  u. 
{ s } )
146 elssuni 3855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( s  e.  ( ran  f  u.  { s } )  ->  s  C_  U. ( ran  f  u.  { s } ) )
147145, 146ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  s  C_  U. ( ran  f  u. 
{ s } )
148 fvssunirn 5551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( f `
 q )  C_  U.
ran  f
149 ssun1 3338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ran  f  C_  ( ran  f  u. 
{ s } )
150 uniss 3848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ran  f  C_  ( ran  f  u.  { s } )  ->  U. ran  f  C_  U. ( ran  f  u.  { s } ) )
151149, 150ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  U. ran  f  C_  U. ( ran  f  u.  { s } )
152148, 151sstri 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f `
 q )  C_  U. ( ran  f  u. 
{ s } )
153147, 152unssi 3350 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  u.  ( f `  q ) )  C_  U. ( ran  f  u. 
{ s } )
154153rgenw 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  A. q  e.  d  ( s  u.  ( f `  q
) )  C_  U. ( ran  f  u.  { s } )
155 iunss 3943 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( U_ q  e.  d  (
s  u.  ( f `
 q ) ) 
C_  U. ( ran  f  u.  { s } )  <->  A. q  e.  d 
( s  u.  (
f `  q )
)  C_  U. ( ran  f  u.  { s } ) )
156154, 155mpbir 200 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  U_ q  e.  d  ( s  u.  ( f `  q
) )  C_  U. ( ran  f  u.  { s } )
157156a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U_ q  e.  d  ( s  u.  (
f `  q )
)  C_  U. ( ran  f  u.  { s } ) )
158142, 157eqsstrd 3212 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  C_  U. ( ran  f  u.  { s } ) )
15933ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  a  C_  J
)
160119, 159sstrd 3189 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ran  f  C_  J )
16135ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  s  e.  J
)
162161snssd 3760 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  { s } 
C_  J )
163160, 162unssd 3351 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  ( ran  f  u.  { s } ) 
C_  J )
164 uniss 3848 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ran  f  u.  {
s } )  C_  J  ->  U. ( ran  f  u.  { s } ) 
C_  U. J )
165164, 2syl6sseqr 3225 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ran  f  u.  {
s } )  C_  J  ->  U. ( ran  f  u.  { s } ) 
C_  X )
166163, 165syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  U. ( ran  f  u.  { s } ) 
C_  X )
167158, 166eqssd 3196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  X  =  U. ( ran  f  u.  {
s } ) )
168 unieq 3836 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  ( ran  f  u.  { s } )  ->  U. b  =  U. ( ran  f  u.  {
s } ) )
169168eqeq2d 2294 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  ( ran  f  u.  { s } )  ->  ( X  = 
U. b  <->  X  =  U. ( ran  f  u. 
{ s } ) ) )
170169rspcev 2884 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ran  f  u. 
{ s } )  e.  ( ~P a  i^i  Fin )  /\  X  =  U. ( ran  f  u.  { s } ) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )
171135, 167, 170syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  (
d  e.  Fin  /\  ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) ) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )
172171expr 598 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  d  e.  Fin )  ->  (
( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  (
f `  q )
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) )
173172exlimdv 1664 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  /\  d  e.  Fin )  ->  ( E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
174173ex 423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  ( E. f ( f : d --> a  /\  A. q  e.  d  q  =  ( s  u.  ( f `  q
) ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
175116, 174mpdd 36 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  Fin  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
17691, 107, 1753syld 51 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  X  =  U. a  /\  a  C_  J )  /\  (
s  e.  a  /\  x  e.  s )
)  /\  ( d  C_ 
ran  ( p  e.  a  |->  ( s  u.  p ) )  /\  X  =  U. d
) )  ->  (
d  e.  PtFin  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) )
177176ex 423 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d )  -> 
( d  e.  PtFin  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
178177com23 72 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( d  e.  PtFin  -> 
( ( d  C_  ran  ( p  e.  a 
|->  ( s  u.  p
) )  /\  X  =  U. d )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
179178rexlimdv 2666 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( E. d  e. 
PtFin  ( d  C_  ran  ( p  e.  a  |->  ( s  u.  p
) )  /\  X  =  U. d )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
18077, 179syld 40 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  ( s  e.  a  /\  x  e.  s ) )  -> 
( A. c  e. 
~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) )
181180expr 598 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  /\  s  e.  a )  ->  ( x  e.  s  ->  ( A. c  e.  ~P  J
( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) )
182181rexlimdva 2667 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( E. s  e.  a  x  e.  s  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
18332, 182syld 40 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( x  e.  X  ->  ( A. c  e.  ~P  J
( X  =  U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d
) )  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) )
184183exlimdv 1664 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( E. x  x  e.  X  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
18527, 184syl5bi 208 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( X  =/=  (/)  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) )
18626, 185pm2.61dne 2523 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  C_  J )  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) )
18715, 186syl3an3 1217 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  U. a  /\  a  e.  ~P J )  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) )
1881873exp 1150 . . . . 5  |-  ( J  e.  Top  ->  ( X  =  U. a  ->  ( a  e.  ~P J  ->  ( A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) )  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b ) ) ) )
189188com24 81 . . . 4  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  -> 
( a  e.  ~P J  ->  ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) ) )
190189ralrimdv 2632 . . 3  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  A. a  e.  ~P  J ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b ) ) )
1912iscmp 17115 . . . 4  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. a  e.  ~P  J ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
192191baibr 872 . . 3  |-  ( J  e.  Top  ->  ( A. a  e.  ~P  J ( X  = 
U. a  ->  E. b  e.  ( ~P a  i^i 
Fin ) X  = 
U. b )  <->  J  e.  Comp ) )
193190, 192sylibd 205 . 2  |-  ( J  e.  Top  ->  ( A. c  e.  ~P  J ( X  = 
U. c  ->  E. d  e.  PtFin  ( d  C_  c  /\  X  =  U. d ) )  ->  J  e.  Comp ) )
19414, 193impbid2 195 1  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  PtFin  ( d 
C_  c  /\  X  =  U. d ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   U_ciun 3905    e. cmpt 4077   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   Fincfn 6863   Topctop 16631   Compccmp 17113   PtFincptfin 26261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867  df-top 16636  df-cmp 17114  df-ptfin 26265
  Copyright terms: Public domain W3C validator