Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con5 Unicode version

Theorem con5 28285
Description: Bi-conditional contraposition variation. This proof is con5VD 28676 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con5  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ph  ->  ps ) )

Proof of Theorem con5
StepHypRef Expression
1 bi2 189 . 2  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ps  ->  ph ) )
21con1d 116 1  |-  ( (
ph 
<->  -.  ps )  -> 
( -.  ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176
This theorem is referenced by:  con5i  28286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177
  Copyright terms: Public domain W3C validator