MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  concn Structured version   Unicode version

Theorem concn 17489
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
concn.x  |-  X  = 
U. J
concn.j  |-  ( ph  ->  J  e.  Con )
concn.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
concn.u  |-  ( ph  ->  U  e.  K )
concn.c  |-  ( ph  ->  U  e.  ( Clsd `  K ) )
concn.a  |-  ( ph  ->  A  e.  X )
concn.1  |-  ( ph  ->  ( F `  A
)  e.  U )
Assertion
Ref Expression
concn  |-  ( ph  ->  F : X --> U )

Proof of Theorem concn
StepHypRef Expression
1 concn.f . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 concn.x . . . . 5  |-  X  = 
U. J
3 eqid 2436 . . . . 5  |-  U. K  =  U. K
42, 3cnf 17310 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
51, 4syl 16 . . 3  |-  ( ph  ->  F : X --> U. K
)
6 ffn 5591 . . 3  |-  ( F : X --> U. K  ->  F  Fn  X )
75, 6syl 16 . 2  |-  ( ph  ->  F  Fn  X )
8 frn 5597 . . . 4  |-  ( F : X --> U. K  ->  ran  F  C_  U. K
)
95, 8syl 16 . . 3  |-  ( ph  ->  ran  F  C_  U. K
)
10 concn.j . . . 4  |-  ( ph  ->  J  e.  Con )
11 dffn4 5659 . . . . . 6  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
127, 11sylib 189 . . . . 5  |-  ( ph  ->  F : X -onto-> ran  F )
13 cntop2 17305 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
141, 13syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
153restuni 17226 . . . . . . 7  |-  ( ( K  e.  Top  /\  ran  F  C_  U. K )  ->  ran  F  =  U. ( Kt  ran  F ) )
1614, 9, 15syl2anc 643 . . . . . 6  |-  ( ph  ->  ran  F  =  U. ( Kt  ran  F ) )
17 foeq3 5651 . . . . . 6  |-  ( ran 
F  =  U. ( Kt  ran  F )  ->  ( F : X -onto-> ran  F  <->  F : X -onto-> U. ( Kt  ran  F ) ) )
1816, 17syl 16 . . . . 5  |-  ( ph  ->  ( F : X -onto-> ran  F  <->  F : X -onto-> U. ( Kt  ran  F ) ) )
1912, 18mpbid 202 . . . 4  |-  ( ph  ->  F : X -onto-> U. ( Kt  ran  F ) )
203toptopon 16998 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2114, 20sylib 189 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
22 ssid 3367 . . . . . . 7  |-  ran  F  C_ 
ran  F
2322a1i 11 . . . . . 6  |-  ( ph  ->  ran  F  C_  ran  F )
24 cnrest2 17350 . . . . . 6  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  F 
C_  ran  F  /\  ran  F  C_  U. K )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
2521, 23, 9, 24syl3anc 1184 . . . . 5  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
261, 25mpbid 202 . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  ( Kt  ran  F
) ) )
27 eqid 2436 . . . . 5  |-  U. ( Kt  ran  F )  =  U. ( Kt  ran  F )
2827cnconn 17485 . . . 4  |-  ( ( J  e.  Con  /\  F : X -onto-> U. ( Kt  ran  F )  /\  F  e.  ( J  Cn  ( Kt  ran  F ) ) )  ->  ( Kt  ran  F
)  e.  Con )
2910, 19, 26, 28syl3anc 1184 . . 3  |-  ( ph  ->  ( Kt  ran  F )  e. 
Con )
30 concn.u . . 3  |-  ( ph  ->  U  e.  K )
31 concn.1 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  U )
32 concn.a . . . . 5  |-  ( ph  ->  A  e.  X )
33 fnfvelrn 5867 . . . . 5  |-  ( ( F  Fn  X  /\  A  e.  X )  ->  ( F `  A
)  e.  ran  F
)
347, 32, 33syl2anc 643 . . . 4  |-  ( ph  ->  ( F `  A
)  e.  ran  F
)
35 inelcm 3682 . . . 4  |-  ( ( ( F `  A
)  e.  U  /\  ( F `  A )  e.  ran  F )  ->  ( U  i^i  ran 
F )  =/=  (/) )
3631, 34, 35syl2anc 643 . . 3  |-  ( ph  ->  ( U  i^i  ran  F )  =/=  (/) )
37 concn.c . . 3  |-  ( ph  ->  U  e.  ( Clsd `  K ) )
383, 9, 29, 30, 36, 37consubclo 17487 . 2  |-  ( ph  ->  ran  F  C_  U
)
39 df-f 5458 . 2  |-  ( F : X --> U  <->  ( F  Fn  X  /\  ran  F  C_  U ) )
407, 38, 39sylanbrc 646 1  |-  ( ph  ->  F : X --> U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725    =/= wne 2599    i^i cin 3319    C_ wss 3320   (/)c0 3628   U.cuni 4015   ran crn 4879    Fn wfn 5449   -->wf 5450   -onto->wfo 5452   ` cfv 5454  (class class class)co 6081   ↾t crest 13648   Topctop 16958  TopOnctopon 16959   Clsdccld 17080    Cn ccn 17288   Conccon 17474
This theorem is referenced by:  pconcon  24918  cvmliftmolem1  24968  cvmlift2lem9  24998  cvmlift3lem6  25011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-fin 7113  df-fi 7416  df-rest 13650  df-topgen 13667  df-top 16963  df-bases 16965  df-topon 16966  df-cld 17083  df-cn 17291  df-con 17475
  Copyright terms: Public domain W3C validator