MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  concompid Unicode version

Theorem concompid 17157
Description: The connected component containing  A contains  A. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
concomp.2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
Assertion
Ref Expression
concompid  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
Distinct variable groups:    x, A    x, J    x, X
Allowed substitution hint:    S( x)

Proof of Theorem concompid
StepHypRef Expression
1 simpr 447 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  X )
21snssd 3760 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  { A }  C_  X )
3 snex 4216 . . . . . 6  |-  { A }  e.  _V
43elpw 3631 . . . . 5  |-  ( { A }  e.  ~P X 
<->  { A }  C_  X )
52, 4sylibr 203 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  { A }  e.  ~P X
)
6 snidg 3665 . . . . 5  |-  ( A  e.  X  ->  A  e.  { A } )
76adantl 452 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  { A } )
8 restsn2 16902 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  =  ~P { A }
)
9 pwsn 3821 . . . . . . 7  |-  ~P { A }  =  { (/)
,  { A } }
10 indiscon 17144 . . . . . . 7  |-  { (/) ,  { A } }  e.  Con
119, 10eqeltri 2353 . . . . . 6  |-  ~P { A }  e.  Con
128, 11syl6eqel 2371 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  e. 
Con )
137, 12jca 518 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) )
14 eleq2 2344 . . . . . 6  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
15 oveq2 5866 . . . . . . . 8  |-  ( x  =  { A }  ->  ( Jt  x )  =  ( Jt  { A } ) )
1615eleq1d 2349 . . . . . . 7  |-  ( x  =  { A }  ->  ( ( Jt  x )  e.  Con  <->  ( Jt  { A } )  e.  Con ) )
1714, 16anbi12d 691 . . . . . 6  |-  ( x  =  { A }  ->  ( ( A  e.  x  /\  ( Jt  x )  e.  Con )  <->  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) ) )
1814, 17anbi12d 691 . . . . 5  |-  ( x  =  { A }  ->  ( ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) )  <->  ( A  e.  { A }  /\  ( A  e.  { A }  /\  ( Jt  { A } )  e.  Con ) ) ) )
1918rspcev 2884 . . . 4  |-  ( ( { A }  e.  ~P X  /\  ( A  e.  { A }  /\  ( A  e. 
{ A }  /\  ( Jt  { A } )  e.  Con ) ) )  ->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
205, 7, 13, 19syl12anc 1180 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
21 elunirab 3840 . . 3  |-  ( A  e.  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  <->  E. x  e.  ~P  X ( A  e.  x  /\  ( A  e.  x  /\  ( Jt  x )  e.  Con ) ) )
2220, 21sylibr 203 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
23 concomp.2 . 2  |-  S  = 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
2422, 23syl6eleqr 2374 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   {cpr 3641   U.cuni 3827   ` cfv 5255  (class class class)co 5858   ↾t crest 13325  TopOnctopon 16632   Conccon 17137
This theorem is referenced by:  concompcld  17160  concompclo  17161  tgpconcompeqg  17794  tgpconcomp  17795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-cld 16756  df-con 17138
  Copyright terms: Public domain W3C validator