MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  condan Structured version   Unicode version

Theorem condan 771
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1  |-  ( (
ph  /\  -.  ps )  ->  ch )
condan.2  |-  ( (
ph  /\  -.  ps )  ->  -.  ch )
Assertion
Ref Expression
condan  |-  ( ph  ->  ps )

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3  |-  ( (
ph  /\  -.  ps )  ->  ch )
2 condan.2 . . 3  |-  ( (
ph  /\  -.  ps )  ->  -.  ch )
31, 2pm2.65da 561 . 2  |-  ( ph  ->  -.  -.  ps )
43notnotrd 108 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360
This theorem is referenced by:  rlimcld2  12374  perfectlem2  21016  subofld  24247  ballotlemfc0  24752  ballotlemic  24766  stoweidlem52  27779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator