Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congmul Unicode version

Theorem congmul 27054
Description: If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
congmul  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( ( B  x.  D )  -  ( C  x.  E )
) )

Proof of Theorem congmul
StepHypRef Expression
1 simp11 985 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  e.  ZZ )
2 simp12 986 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  B  e.  ZZ )
3 simp2l 981 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  D  e.  ZZ )
42, 3zmulcld 10123 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( B  x.  D )  e.  ZZ )
5 simp2r 982 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  E  e.  ZZ )
62, 5zmulcld 10123 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( B  x.  E )  e.  ZZ )
7 simp13 987 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  C  e.  ZZ )
87, 5zmulcld 10123 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( C  x.  E )  e.  ZZ )
9 simp3r 984 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( D  -  E
) )
10 zsubcl 10061 . . . . . 6  |-  ( ( D  e.  ZZ  /\  E  e.  ZZ )  ->  ( D  -  E
)  e.  ZZ )
11103ad2ant2 977 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( D  -  E )  e.  ZZ )
12 dvdsmultr2 12564 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( D  -  E )  e.  ZZ )  ->  ( A  ||  ( D  -  E )  ->  A  ||  ( B  x.  ( D  -  E )
) ) )
131, 2, 11, 12syl3anc 1182 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( A  ||  ( D  -  E )  ->  A  ||  ( B  x.  ( D  -  E )
) ) )
149, 13mpd 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( B  x.  ( D  -  E )
) )
15 zcn 10029 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  CC )
16153ad2ant2 977 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  B  e.  CC )
17163ad2ant1 976 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  B  e.  CC )
18 zcn 10029 . . . . . 6  |-  ( D  e.  ZZ  ->  D  e.  CC )
1918adantr 451 . . . . 5  |-  ( ( D  e.  ZZ  /\  E  e.  ZZ )  ->  D  e.  CC )
20193ad2ant2 977 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  D  e.  CC )
21 zcn 10029 . . . . . 6  |-  ( E  e.  ZZ  ->  E  e.  CC )
2221adantl 452 . . . . 5  |-  ( ( D  e.  ZZ  /\  E  e.  ZZ )  ->  E  e.  CC )
23223ad2ant2 977 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  E  e.  CC )
2417, 20, 23subdid 9235 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( B  x.  ( D  -  E ) )  =  ( ( B  x.  D )  -  ( B  x.  E )
) )
2514, 24breqtrd 4047 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( ( B  x.  D )  -  ( B  x.  E )
) )
26 simp3l 983 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( B  -  C
) )
272, 7zsubcld 10122 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( B  -  C )  e.  ZZ )
28 dvdsmultr1 12563 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( B  -  C
)  e.  ZZ  /\  E  e.  ZZ )  ->  ( A  ||  ( B  -  C )  ->  A  ||  ( ( B  -  C )  x.  E ) ) )
291, 27, 5, 28syl3anc 1182 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  ( A  ||  ( B  -  C )  ->  A  ||  ( ( B  -  C )  x.  E
) ) )
3026, 29mpd 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( ( B  -  C )  x.  E
) )
31 zcn 10029 . . . . . 6  |-  ( C  e.  ZZ  ->  C  e.  CC )
32313ad2ant3 978 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
33323ad2ant1 976 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  C  e.  CC )
3417, 33, 23subdird 9236 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  (
( B  -  C
)  x.  E )  =  ( ( B  x.  E )  -  ( C  x.  E
) ) )
3530, 34breqtrd 4047 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( ( B  x.  E )  -  ( C  x.  E )
) )
36 congtr 27052 . 2  |-  ( ( ( A  e.  ZZ  /\  ( B  x.  D
)  e.  ZZ )  /\  ( ( B  x.  E )  e.  ZZ  /\  ( C  x.  E )  e.  ZZ )  /\  ( A  ||  ( ( B  x.  D )  -  ( B  x.  E
) )  /\  A  ||  ( ( B  x.  E )  -  ( C  x.  E )
) ) )  ->  A  ||  ( ( B  x.  D )  -  ( C  x.  E
) ) )
371, 4, 6, 8, 25, 35, 36syl222anc 1198 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( D  e.  ZZ  /\  E  e.  ZZ )  /\  ( A  ||  ( B  -  C
)  /\  A  ||  ( D  -  E )
) )  ->  A  ||  ( ( B  x.  D )  -  ( C  x.  E )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   CCcc 8735    x. cmul 8742    - cmin 9037   ZZcz 10024    || cdivides 12531
This theorem is referenced by:  mzpcong  27059  jm2.18  27081  jm2.15nn0  27096  jm2.16nn0  27097  jm2.27c  27100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-dvds 12532
  Copyright terms: Public domain W3C validator