MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjghm Unicode version

Theorem conjghm 14713
Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjghm.f  |-  F  =  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjghm  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X -1-1-onto-> X ) )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjghm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conjghm.x . . 3  |-  X  =  ( Base `  G
)
2 conjghm.p . . 3  |-  .+  =  ( +g  `  G )
3 simpl 443 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  G  e.  Grp )
43adantr 451 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  G  e.  Grp )
51, 2grpcl 14495 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  x  e.  X )  ->  ( A  .+  x
)  e.  X )
653expa 1151 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  ( A  .+  x )  e.  X
)
7 simplr 731 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  A  e.  X )
8 conjghm.m . . . . . 6  |-  .-  =  ( -g `  G )
91, 8grpsubcl 14546 . . . . 5  |-  ( ( G  e.  Grp  /\  ( A  .+  x )  e.  X  /\  A  e.  X )  ->  (
( A  .+  x
)  .-  A )  e.  X )
104, 6, 7, 9syl3anc 1182 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  x  e.  X
)  ->  ( ( A  .+  x )  .-  A )  e.  X
)
11 conjghm.f . . . 4  |-  F  =  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )
1210, 11fmptd 5684 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : X --> X )
133adantr 451 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  G  e.  Grp )
14 simplr 731 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  A  e.  X )
15 simprl 732 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
y  e.  X )
161, 2grpcl 14495 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  y  e.  X )  ->  ( A  .+  y
)  e.  X )
1713, 14, 15, 16syl3anc 1182 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( A  .+  y
)  e.  X )
181, 8grpsubcl 14546 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( A  .+  y )  e.  X  /\  A  e.  X )  ->  (
( A  .+  y
)  .-  A )  e.  X )
1913, 17, 14, 18syl3anc 1182 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  y )  .-  A
)  e.  X )
20 simprr 733 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
z  e.  X )
211, 8grpsubcl 14546 . . . . . . 7  |-  ( ( G  e.  Grp  /\  z  e.  X  /\  A  e.  X )  ->  ( z  .-  A
)  e.  X )
2213, 20, 14, 21syl3anc 1182 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( z  .-  A
)  e.  X )
231, 2grpass 14496 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( ( A 
.+  y )  .-  A )  e.  X  /\  A  e.  X  /\  ( z  .-  A
)  e.  X ) )  ->  ( (
( ( A  .+  y )  .-  A
)  .+  A )  .+  ( z  .-  A
) )  =  ( ( ( A  .+  y )  .-  A
)  .+  ( A  .+  ( z  .-  A
) ) ) )
2413, 19, 14, 22, 23syl13anc 1184 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( A  .+  y ) 
.-  A )  .+  A )  .+  (
z  .-  A )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( A  .+  (
z  .-  A )
) ) )
251, 2, 8grpnpcan 14557 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  .+  y )  e.  X  /\  A  e.  X )  ->  (
( ( A  .+  y )  .-  A
)  .+  A )  =  ( A  .+  y ) )
2613, 17, 14, 25syl3anc 1182 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .-  A )  .+  A
)  =  ( A 
.+  y ) )
2726oveq1d 5873 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( ( A  .+  y ) 
.-  A )  .+  A )  .+  (
z  .-  A )
)  =  ( ( A  .+  y ) 
.+  ( z  .-  A ) ) )
281, 2, 8grpaddsubass 14555 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( ( A  .+  y )  e.  X  /\  z  e.  X  /\  A  e.  X
) )  ->  (
( ( A  .+  y )  .+  z
)  .-  A )  =  ( ( A 
.+  y )  .+  ( z  .-  A
) ) )
2913, 17, 20, 14, 28syl13anc 1184 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .+  z )  .-  A
)  =  ( ( A  .+  y ) 
.+  ( z  .-  A ) ) )
301, 2grpass 14496 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  y  e.  X  /\  z  e.  X
) )  ->  (
( A  .+  y
)  .+  z )  =  ( A  .+  ( y  .+  z
) ) )
3113, 14, 15, 20, 30syl13anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  y )  .+  z
)  =  ( A 
.+  ( y  .+  z ) ) )
3231oveq1d 5873 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .+  z )  .-  A
)  =  ( ( A  .+  ( y 
.+  z ) ) 
.-  A ) )
3327, 29, 323eqtr2rd 2322 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  ( y  .+  z
) )  .-  A
)  =  ( ( ( ( A  .+  y )  .-  A
)  .+  A )  .+  ( z  .-  A
) ) )
341, 2, 8grpaddsubass 14555 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  z  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  z
)  .-  A )  =  ( A  .+  ( z  .-  A
) ) )
3513, 14, 20, 14, 34syl13anc 1184 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  z )  .-  A
)  =  ( A 
.+  ( z  .-  A ) ) )
3635oveq2d 5874 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( ( A 
.+  y )  .-  A )  .+  (
( A  .+  z
)  .-  A )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( A  .+  (
z  .-  A )
) ) )
3724, 33, 363eqtr4d 2325 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( A  .+  ( y  .+  z
) )  .-  A
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( ( A  .+  z )  .-  A
) ) )
381, 2grpcl 14495 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y  .+  z
)  e.  X )
3913, 15, 20, 38syl3anc 1182 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y  .+  z
)  e.  X )
40 oveq2 5866 . . . . . . 7  |-  ( x  =  ( y  .+  z )  ->  ( A  .+  x )  =  ( A  .+  (
y  .+  z )
) )
4140oveq1d 5873 . . . . . 6  |-  ( x  =  ( y  .+  z )  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  ( y  .+  z ) )  .-  A ) )
42 ovex 5883 . . . . . 6  |-  ( ( A  .+  ( y 
.+  z ) ) 
.-  A )  e. 
_V
4341, 11, 42fvmpt 5602 . . . . 5  |-  ( ( y  .+  z )  e.  X  ->  ( F `  ( y  .+  z ) )  =  ( ( A  .+  ( y  .+  z
) )  .-  A
) )
4439, 43syl 15 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y  .+  z )
)  =  ( ( A  .+  ( y 
.+  z ) ) 
.-  A ) )
45 oveq2 5866 . . . . . . . 8  |-  ( x  =  y  ->  ( A  .+  x )  =  ( A  .+  y
) )
4645oveq1d 5873 . . . . . . 7  |-  ( x  =  y  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  y )  .-  A ) )
47 ovex 5883 . . . . . . 7  |-  ( ( A  .+  y ) 
.-  A )  e. 
_V
4846, 11, 47fvmpt 5602 . . . . . 6  |-  ( y  e.  X  ->  ( F `  y )  =  ( ( A 
.+  y )  .-  A ) )
4948ad2antrl 708 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  ( ( A  .+  y ) 
.-  A ) )
50 oveq2 5866 . . . . . . . 8  |-  ( x  =  z  ->  ( A  .+  x )  =  ( A  .+  z
) )
5150oveq1d 5873 . . . . . . 7  |-  ( x  =  z  ->  (
( A  .+  x
)  .-  A )  =  ( ( A 
.+  z )  .-  A ) )
52 ovex 5883 . . . . . . 7  |-  ( ( A  .+  z ) 
.-  A )  e. 
_V
5351, 11, 52fvmpt 5602 . . . . . 6  |-  ( z  e.  X  ->  ( F `  z )  =  ( ( A 
.+  z )  .-  A ) )
5453ad2antll 709 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  ( ( A  .+  z ) 
.-  A ) )
5549, 54oveq12d 5876 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y )  .+  ( F `  z )
)  =  ( ( ( A  .+  y
)  .-  A )  .+  ( ( A  .+  z )  .-  A
) ) )
5637, 44, 553eqtr4d 2325 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y  .+  z )
)  =  ( ( F `  y ) 
.+  ( F `  z ) ) )
571, 1, 2, 2, 3, 3, 12, 56isghmd 14692 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F  e.  ( G 
GrpHom  G ) )
583adantr 451 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  G  e.  Grp )
59 eqid 2283 . . . . . 6  |-  ( inv g `  G )  =  ( inv g `  G )
601, 59grpinvcl 14527 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( inv g `  G ) `  A
)  e.  X )
6160adantr 451 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( ( inv g `  G ) `
 A )  e.  X )
62 simpr 447 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  y  e.  X )
63 simplr 731 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  A  e.  X )
641, 2grpcl 14495 . . . . 5  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  A  e.  X )  ->  ( y  .+  A
)  e.  X )
6558, 62, 63, 64syl3anc 1182 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( y  .+  A )  e.  X
)
661, 2grpcl 14495 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( inv g `  G ) `  A
)  e.  X  /\  ( y  .+  A
)  e.  X )  ->  ( ( ( inv g `  G
) `  A )  .+  ( y  .+  A
) )  e.  X
)
6758, 61, 65, 66syl3anc 1182 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  y  e.  X
)  ->  ( (
( inv g `  G ) `  A
)  .+  ( y  .+  A ) )  e.  X )
683adantr 451 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  G  e.  Grp )
6965adantrl 696 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( y  .+  A
)  e.  X )
706adantrr 697 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A  .+  x
)  e.  X )
7160adantr 451 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( inv g `  G ) `  A
)  e.  X )
721, 2grplcan 14534 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( y  .+  A )  e.  X  /\  ( A  .+  x
)  e.  X  /\  ( ( inv g `  G ) `  A
)  e.  X ) )  ->  ( (
( ( inv g `  G ) `  A
)  .+  ( y  .+  A ) )  =  ( ( ( inv g `  G ) `
 A )  .+  ( A  .+  x ) )  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
7368, 69, 70, 71, 72syl13anc 1184 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  ( y  .+  A
) )  =  ( ( ( inv g `  G ) `  A
)  .+  ( A  .+  x ) )  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
74 eqid 2283 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
751, 2, 74, 59grplinv 14528 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( inv g `  G ) `
 A )  .+  A )  =  ( 0g `  G ) )
7675adantr 451 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( inv g `  G ) `
 A )  .+  A )  =  ( 0g `  G ) )
7776oveq1d 5873 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  A )  .+  x
)  =  ( ( 0g `  G ) 
.+  x ) )
78 simplr 731 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A  e.  X )
79 simprl 732 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
801, 2grpass 14496 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( ( inv g `  G ) `
 A )  e.  X  /\  A  e.  X  /\  x  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  A )  .+  x
)  =  ( ( ( inv g `  G ) `  A
)  .+  ( A  .+  x ) ) )
8168, 71, 78, 79, 80syl13anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  A )  .+  x
)  =  ( ( ( inv g `  G ) `  A
)  .+  ( A  .+  x ) ) )
821, 2, 74grplid 14512 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( 0g `  G )  .+  x
)  =  x )
8382ad2ant2r 727 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( 0g `  G )  .+  x
)  =  x )
8477, 81, 833eqtr3rd 2324 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  =  ( (
( inv g `  G ) `  A
)  .+  ( A  .+  x ) ) )
8584eqeq2d 2294 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  ( y  .+  A
) )  =  x  <-> 
( ( ( inv g `  G ) `
 A )  .+  ( y  .+  A
) )  =  ( ( ( inv g `  G ) `  A
)  .+  ( A  .+  x ) ) ) )
86 simprr 733 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
y  e.  X )
871, 2, 8grpsubadd 14553 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( ( A  .+  x )  e.  X  /\  A  e.  X  /\  y  e.  X
) )  ->  (
( ( A  .+  x )  .-  A
)  =  y  <->  ( y  .+  A )  =  ( A  .+  x ) ) )
8868, 70, 78, 86, 87syl13anc 1184 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( A 
.+  x )  .-  A )  =  y  <-> 
( y  .+  A
)  =  ( A 
.+  x ) ) )
8973, 85, 883bitr4d 276 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( ( inv g `  G
) `  A )  .+  ( y  .+  A
) )  =  x  <-> 
( ( A  .+  x )  .-  A
)  =  y ) )
90 eqcom 2285 . . . 4  |-  ( x  =  ( ( ( inv g `  G
) `  A )  .+  ( y  .+  A
) )  <->  ( (
( inv g `  G ) `  A
)  .+  ( y  .+  A ) )  =  x )
91 eqcom 2285 . . . 4  |-  ( y  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  y )
9289, 90, 913bitr4g 279 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x  =  ( ( ( inv g `  G ) `  A
)  .+  ( y  .+  A ) )  <->  y  =  ( ( A  .+  x )  .-  A
) ) )
9311, 10, 67, 92f1o2d 6069 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  F : X -1-1-onto-> X )
9457, 93jca 518 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X -1-1-onto-> X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    e. cmpt 4077   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   inv gcminusg 14363   -gcsg 14365    GrpHom cghm 14680
This theorem is referenced by:  conjsubg  14714  conjsubgen  14715
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-ghm 14681
  Copyright terms: Public domain W3C validator