MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Unicode version

Theorem conjmul 9477
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 730 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  P  e.  CC )
2 simprl 732 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  Q  e.  CC )
3 reccl 9431 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( 1  /  P
)  e.  CC )
43adantr 451 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  P
)  e.  CC )
51, 2, 4mul32d 9022 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  ( ( P  x.  ( 1  /  P ) )  x.  Q ) )
6 recid 9438 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( P  x.  (
1  /  P ) )  =  1 )
76oveq1d 5873 . . . . . . 7  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
87adantr 451 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
9 mulid2 8836 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 708 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  x.  Q
)  =  Q )
115, 8, 103eqtrd 2319 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  Q )
12 reccl 9431 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( 1  /  Q
)  e.  CC )
1312adantl 452 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  Q
)  e.  CC )
141, 2, 13mulassd 8858 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  ( P  x.  ( Q  x.  ( 1  /  Q
) ) ) )
15 recid 9438 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( Q  x.  (
1  /  Q ) )  =  1 )
1615oveq2d 5874 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
1716adantl 452 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulid1 8835 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 706 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2319 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  P )
2111, 20oveq12d 5876 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( 1  /  P
) )  +  ( ( P  x.  Q
)  x.  ( 1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 8821 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 727 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  e.  CC )
2423, 4, 13adddid 8859 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q
)  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q
) ) ) )
25 addcom 8998 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 727 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  +  Q
)  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2325 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulid1d 8852 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 727 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2297 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( P  +  Q
)  =  ( P  x.  Q ) ) )
31 addcl 8819 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 463 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC )
33 mulne0 9410 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  =/=  0 )
34 ax-1cn 8795 . . . 4  |-  1  e.  CC
35 mulcan 9405 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3634, 35mp3an2 1265 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3732, 23, 33, 36syl12anc 1180 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( ( 1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
38 eqcom 2285 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 9412 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39syl5bb 248 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 727 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 274 1  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037    / cdiv 9423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator