MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjsubgen Structured version   Unicode version

Theorem conjsubgen 15030
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
Assertion
Ref Expression
conjsubgen  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
Distinct variable groups:    x,  .-    x,  .+    x, A    x, G    x, S    x, X
Allowed substitution hint:    F( x)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 14941 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 conjghm.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
3 conjghm.p . . . . . . . . 9  |-  .+  =  ( +g  `  G )
4 conjghm.m . . . . . . . . 9  |-  .-  =  ( -g `  G )
5 eqid 2435 . . . . . . . . 9  |-  ( x  e.  X  |->  ( ( A  .+  x ) 
.-  A ) )  =  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )
62, 3, 4, 5conjghm 15028 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) ) : X -1-1-onto-> X ) )
71, 6sylan 458 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  e.  ( G  GrpHom  G )  /\  ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-onto-> X
) )
87simprd 450 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) : X -1-1-onto-> X )
9 f1of1 5665 . . . . . 6  |-  ( ( x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) : X -1-1-onto-> X  -> 
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-> X )
108, 9syl 16 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
) : X -1-1-> X
)
112subgss 14937 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1211adantr 452 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  C_  X )
13 f1ssres 5638 . . . . 5  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) ) : X -1-1-> X  /\  S  C_  X
)  ->  ( (
x  e.  X  |->  ( ( A  .+  x
)  .-  A )
)  |`  S ) : S -1-1-> X )
1410, 12, 13syl2anc 643 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S ) : S -1-1-> X )
15 resmpt 5183 . . . . . . 7  |-  ( S 
C_  X  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  ( x  e.  S  |->  ( ( A 
.+  x )  .-  A ) ) )
1612, 15syl 16 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  ( x  e.  S  |->  ( ( A 
.+  x )  .-  A ) ) )
17 conjsubg.f . . . . . 6  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
1816, 17syl6eqr 2485 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F )
19 f1eq1 5626 . . . . 5  |-  ( ( ( x  e.  X  |->  ( ( A  .+  x )  .-  A
) )  |`  S )  =  F  ->  (
( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S ) : S -1-1-> X  <-> 
F : S -1-1-> X
) )
2018, 19syl 16 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  (
( ( x  e.  X  |->  ( ( A 
.+  x )  .-  A ) )  |`  S ) : S -1-1-> X  <-> 
F : S -1-1-> X
) )
2114, 20mpbid 202 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  F : S -1-1-> X )
22 f1f1orn 5677 . . 3  |-  ( F : S -1-1-> X  ->  F : S -1-1-onto-> ran  F )
2321, 22syl 16 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  F : S -1-1-onto-> ran  F )
24 f1oeng 7118 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  F : S -1-1-onto-> ran  F )  ->  S  ~~  ran  F )
2523, 24syldan 457 1  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ran crn 4871    |` cres 4872   -1-1->wf1 5443   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073    ~~ cen 7098   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677   -gcsg 14680  SubGrpcsubg 14930    GrpHom cghm 14995
This theorem is referenced by:  slwhash  15250  sylow2  15252  sylow3lem1  15253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-en 7102  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806  df-subg 14933  df-ghm 14996
  Copyright terms: Public domain W3C validator