MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr2trl Structured version   Unicode version

Theorem constr2trl 21601
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by Alexander van der Vekens, 1-Feb-2018.)
Hypotheses
Ref Expression
2trlY.i  |-  ( I  e.  U  /\  J  e.  W )
2trlY.f  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
2trlY.p  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
Assertion
Ref Expression
constr2trl  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F ( V Trails  E
) P ) )

Proof of Theorem constr2trl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpll 732 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  V  e.  X )
2 simpr 449 . . . . . . . . . 10  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  Y )
32adantr 453 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  E  e.  Y )
4 simpr 449 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  B  e.  V )
51, 3, 43jca 1135 . . . . . . . 8  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  ( V  e.  X  /\  E  e.  Y  /\  B  e.  V )
)
65adantr 453 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  -> 
( V  e.  X  /\  E  e.  Y  /\  B  e.  V
) )
7 simpr1 964 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  I  =/=  J )
8 3simpc 957 . . . . . . . 8  |-  ( ( I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } )  ->  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )
98adantl 454 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  -> 
( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } ) )
10 2trlY.i . . . . . . . 8  |-  ( I  e.  U  /\  J  e.  W )
11 2trlY.f . . . . . . . 8  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
1210, 112trllemE 21555 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  I  =/=  J  /\  ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
136, 7, 9, 12syl3anc 1185 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
1413ex 425 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  (
( I  =/=  J  /\  ( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E ) )
15143ad2antr2 1124 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E ) )
1615imp 420 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
17 2trlY.p . . . . . . 7  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
18172trllemG 21560 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... 2 ) --> V )
1910, 112trllemA 21552 . . . . . . . 8  |-  ( # `  F )  =  2
2019oveq2i 6094 . . . . . . 7  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 2 )
2120feq2i 5588 . . . . . 6  |-  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V )
2218, 21sylibr 205 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2322adantl 454 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2423adantr 453 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2510, 11, 172wlklem1 21599 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
268, 25sylan2 462 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2710, 112trllemB 21553 . . . . . 6  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 }
2827a1i 11 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
2928raleqdv 2912 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  {
0 ,  1 }  ( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
3026, 29mpbird 225 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )
31 prex 4408 . . . . . . 7  |-  { <. 0 ,  I >. , 
<. 1 ,  J >. }  e.  _V
3211, 31eqeltri 2508 . . . . . 6  |-  F  e. 
_V
33 tpex 4710 . . . . . . 7  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. ,  <. 2 ,  C >. }  e.  _V
3417, 33eqeltri 2508 . . . . . 6  |-  P  e. 
_V
35 istrl2 21540 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3632, 34, 35mpanr12 668 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3736adantr 453 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3837adantr 453 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( F ( V Trails  E
) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3916, 24, 30, 38mpbir3and 1138 . 2  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F
( V Trails  E ) P )
4039ex 425 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F ( V Trails  E
) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   _Vcvv 2958   {cpr 3817   {ctp 3818   <.cop 3819   class class class wbr 4214   dom cdm 4880   -->wf 5452   -1-1->wf1 5453   ` cfv 5456  (class class class)co 6083   0cc0 8992   1c1 8993    + caddc 8995   2c2 10051   ...cfz 11045  ..^cfzo 11137   #chash 11620   Trails ctrail 21509
This theorem is referenced by:  constr2spth  21602  constr2pth  21603  2pthon  21604
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-fzo 11138  df-hash 11621  df-word 11725  df-wlk 21518  df-trail 21519
  Copyright terms: Public domain W3C validator