MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  constr2trl Unicode version

Theorem constr2trl 21560
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by Alexander van der Vekens, 1-Feb-2018.)
Hypotheses
Ref Expression
2trlY.i  |-  ( I  e.  U  /\  J  e.  W )
2trlY.f  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
2trlY.p  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
Assertion
Ref Expression
constr2trl  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F ( V Trails  E
) P ) )

Proof of Theorem constr2trl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  V  e.  X )
2 simpr 448 . . . . . . . . . 10  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  Y )
32adantr 452 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  E  e.  Y )
4 simpr 448 . . . . . . . . 9  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  B  e.  V )
51, 3, 43jca 1134 . . . . . . . 8  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  ( V  e.  X  /\  E  e.  Y  /\  B  e.  V )
)
65adantr 452 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  -> 
( V  e.  X  /\  E  e.  Y  /\  B  e.  V
) )
7 simpr1 963 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  I  =/=  J )
8 3simpc 956 . . . . . . . 8  |-  ( ( I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } )  ->  (
( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )
98adantl 453 . . . . . . 7  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  -> 
( ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } ) )
10 2trlY.i . . . . . . . 8  |-  ( I  e.  U  /\  J  e.  W )
11 2trlY.f . . . . . . . 8  |-  F  =  { <. 0 ,  I >. ,  <. 1 ,  J >. }
1210, 112trllemE 21514 . . . . . . 7  |-  ( ( ( V  e.  X  /\  E  e.  Y  /\  B  e.  V
)  /\  I  =/=  J  /\  ( ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
136, 7, 9, 12syl3anc 1184 . . . . . 6  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  B  e.  V )  /\  (
I  =/=  J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } ) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
1413ex 424 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  B  e.  V )  ->  (
( I  =/=  J  /\  ( E `  I
)  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C } )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E ) )
15143ad2antr2 1123 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E ) )
1615imp 419 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F : ( 0..^ (
# `  F )
) -1-1-> dom  E )
17 2trlY.p . . . . . . 7  |-  P  =  { <. 0 ,  A >. ,  <. 1 ,  B >. ,  <. 2 ,  C >. }
18172trllemG 21519 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... 2 ) --> V )
1910, 112trllemA 21511 . . . . . . . 8  |-  ( # `  F )  =  2
2019oveq2i 6059 . . . . . . 7  |-  ( 0 ... ( # `  F
) )  =  ( 0 ... 2 )
2120feq2i 5553 . . . . . 6  |-  ( P : ( 0 ... ( # `  F
) ) --> V  <->  P :
( 0 ... 2
) --> V )
2218, 21sylibr 204 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2322adantl 453 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2423adantr 452 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  P : ( 0 ... ( # `  F
) ) --> V )
2510, 11, 172wlklem1 21558 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( ( E `  I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
268, 25sylan2 461 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2710, 112trllemB 21512 . . . . . 6  |-  ( 0..^ ( # `  F
) )  =  {
0 ,  1 }
2827a1i 11 . . . . 5  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  (
0..^ ( # `  F
) )  =  {
0 ,  1 } )
2928raleqdv 2878 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  {
0 ,  1 }  ( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
3026, 29mpbird 224 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) } )
31 prex 4374 . . . . . . 7  |-  { <. 0 ,  I >. , 
<. 1 ,  J >. }  e.  _V
3211, 31eqeltri 2482 . . . . . 6  |-  F  e. 
_V
33 tpex 4675 . . . . . . 7  |-  { <. 0 ,  A >. , 
<. 1 ,  B >. ,  <. 2 ,  C >. }  e.  _V
3417, 33eqeltri 2482 . . . . . 6  |-  P  e. 
_V
35 istrl2 21499 . . . . . 6  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3632, 34, 35mpanr12 667 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3736adantr 452 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( F ( V Trails  E ) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3837adantr 452 . . 3  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  ( F ( V Trails  E
) P  <->  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
3916, 24, 30, 38mpbir3and 1137 . 2  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  /\  ( I  =/=  J  /\  ( E `
 I )  =  { A ,  B }  /\  ( E `  J )  =  { B ,  C }
) )  ->  F
( V Trails  E ) P )
4039ex 424 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( I  =/= 
J  /\  ( E `  I )  =  { A ,  B }  /\  ( E `  J
)  =  { B ,  C } )  ->  F ( V Trails  E
) P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674   _Vcvv 2924   {cpr 3783   {ctp 3784   <.cop 3785   class class class wbr 4180   dom cdm 4845   -->wf 5417   -1-1->wf1 5418   ` cfv 5421  (class class class)co 6048   0cc0 8954   1c1 8955    + caddc 8957   2c2 10013   ...cfz 11007  ..^cfzo 11098   #chash 11581   Trails ctrail 21468
This theorem is referenced by:  constr2spth  21561  constr2pth  21562  2pthon  21563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-card 7790  df-cda 8012  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-n0 10186  df-z 10247  df-uz 10453  df-fz 11008  df-fzo 11099  df-hash 11582  df-word 11686  df-wlk 21477  df-trail 21478
  Copyright terms: Public domain W3C validator