MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprm Unicode version

Theorem coprm 12779
Description: A prime number either divides an integer or is coprime to it, but not both. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )

Proof of Theorem coprm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmz 12762 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2 gcddvds 12694 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  gcd  N )  ||  P  /\  ( P  gcd  N ) 
||  N ) )
31, 2sylan 457 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  ||  P  /\  ( P  gcd  N ) 
||  N ) )
43simprd 449 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  N )
5 breq1 4026 . . . . 5  |-  ( ( P  gcd  N )  =  P  ->  (
( P  gcd  N
)  ||  N  <->  P  ||  N
) )
64, 5syl5ibcom 211 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  P  ->  P  ||  N ) )
76con3d 125 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  ->  -.  ( P  gcd  N
)  =  P ) )
8 0nnn 9777 . . . . . . . . 9  |-  -.  0  e.  NN
9 prmnn 12761 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
10 eleq1 2343 . . . . . . . . . 10  |-  ( P  =  0  ->  ( P  e.  NN  <->  0  e.  NN ) )
119, 10syl5ibcom 211 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =  0  ->  0  e.  NN ) )
128, 11mtoi 169 . . . . . . . 8  |-  ( P  e.  Prime  ->  -.  P  =  0 )
1312intnanrd 883 . . . . . . 7  |-  ( P  e.  Prime  ->  -.  ( P  =  0  /\  N  =  0 ) )
1413adantr 451 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  -.  ( P  =  0  /\  N  =  0
) )
15 gcdn0cl 12693 . . . . . . . 8  |-  ( ( ( P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  ->  ( P  gcd  N )  e.  NN )
1615ex 423 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( P  gcd  N
)  e.  NN ) )
171, 16sylan 457 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( P  gcd  N )  e.  NN ) )
1814, 17mpd 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  NN )
193simpld 445 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  P )
20 isprm2 12766 . . . . . . . 8  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2120simprbi 450 . . . . . . 7  |-  ( P  e.  Prime  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
22 breq1 4026 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( z  ||  P  <->  ( P  gcd  N )  ||  P ) )
23 eqeq1 2289 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  1  <->  ( P  gcd  N )  =  1 ) )
24 eqeq1 2289 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  P  <->  ( P  gcd  N )  =  P ) )
2523, 24orbi12d 690 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( ( P  gcd  N )  =  1  \/  ( P  gcd  N
)  =  P ) ) )
2622, 25imbi12d 311 . . . . . . . 8  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  ( ( P  gcd  N )  ||  P  ->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) ) ) )
2726rspcv 2880 . . . . . . 7  |-  ( ( P  gcd  N )  e.  NN  ->  ( A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2821, 27syl5com 26 . . . . . 6  |-  ( P  e.  Prime  ->  ( ( P  gcd  N )  e.  NN  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2928adantr 451 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  e.  NN  ->  ( ( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
3018, 19, 29mp2d 41 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) )
31 biorf 394 . . . . 5  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 ) ) )
32 orcom 376 . . . . 5  |-  ( ( ( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 )  <->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) )
3331, 32syl6bb 252 . . . 4  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) )
3430, 33syl5ibrcom 213 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  gcd  N
)  =  P  -> 
( P  gcd  N
)  =  1 ) )
357, 34syld 40 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  -> 
( P  gcd  N
)  =  1 ) )
36 iddvds 12542 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  ||  P )
371, 36syl 15 . . . . . 6  |-  ( P  e.  Prime  ->  P  ||  P )
3837adantr 451 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  ||  P )
39 dvdslegcd 12695 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) )
4039ex 423 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
41403anidm12 1239 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) ) )
421, 41sylan 457 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
4314, 42mpd 14 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N ) ) )
4438, 43mpand 656 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  P  <_  ( P  gcd  N
) ) )
45 prmuz2 12776 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
46 eluz2b1 10289 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
4745, 46sylib 188 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P  e.  ZZ  /\  1  <  P ) )
4847simprd 449 . . . . . 6  |-  ( P  e.  Prime  ->  1  < 
P )
4948adantr 451 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  1  <  P )
501zred 10117 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR )
5150adantr 451 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  e.  RR )
5218nnred 9761 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  RR )
53 1re 8837 . . . . . . 7  |-  1  e.  RR
54 ltletr 8913 . . . . . . 7  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  ( P  gcd  N )  e.  RR )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5553, 54mp3an1 1264 . . . . . 6  |-  ( ( P  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( ( 1  < 
P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5651, 52, 55syl2anc 642 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5749, 56mpand 656 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  <_  ( P  gcd  N )  ->  1  <  ( P  gcd  N ) ) )
58 ltneOLD 8918 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( P  gcd  N )  e.  RR  /\  1  <  ( P  gcd  N
) )  ->  ( P  gcd  N )  =/=  1 )
59583expia 1153 . . . . 5  |-  ( ( 1  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( 1  <  ( P  gcd  N )  -> 
( P  gcd  N
)  =/=  1 ) )
6053, 52, 59sylancr 644 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1 ) )
6144, 57, 603syld 51 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  ( P  gcd  N )  =/=  1 ) )
6261necon2bd 2495 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  ->  -.  P  ||  N ) )
6335, 62impbid 183 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746   2c2 9795   ZZcz 10024   ZZ>=cuz 10230    || cdivides 12531    gcd cgcd 12685   Primecprime 12758
This theorem is referenced by:  prmrp  12780  euclemma  12787  phiprmpw  12844  fermltl  12852  prmdiv  12853  prmdiveq  12854  prmpwdvds  12951  1259lem5  13133  2503lem3  13137  4001lem4  13142  gexexlem  15144  ablfac1lem  15303  ablfac1eu  15308  pgpfac1lem3  15312  perfect1  20467  perfectlem1  20468  perfectlem2  20469  lgslem1  20535  lgsqrlem2  20581  lgsqr  20585  lgsquad2lem2  20598  2sqblem  20616  rpvmasumlem  20636  dchrisum0flblem2  20658  nn0prpwlem  26238
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator