MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Unicode version

Theorem cores 5314
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )

Proof of Theorem cores
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2903 . . . . . . 7  |-  z  e. 
_V
2 vex 2903 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 5041 . . . . . 6  |-  ( z B y  ->  y  e.  ran  B )
4 ssel 3286 . . . . . 6  |-  ( ran 
B  C_  C  ->  ( y  e.  ran  B  ->  y  e.  C ) )
5 vex 2903 . . . . . . . 8  |-  x  e. 
_V
65brres 5093 . . . . . . 7  |-  ( y ( A  |`  C ) x  <->  ( y A x  /\  y  e.  C ) )
76rbaib 874 . . . . . 6  |-  ( y  e.  C  ->  (
y ( A  |`  C ) x  <->  y A x ) )
83, 4, 7syl56 32 . . . . 5  |-  ( ran 
B  C_  C  ->  ( z B y  -> 
( y ( A  |`  C ) x  <->  y A x ) ) )
98pm5.32d 621 . . . 4  |-  ( ran 
B  C_  C  ->  ( ( z B y  /\  y ( A  |`  C ) x )  <-> 
( z B y  /\  y A x ) ) )
109exbidv 1633 . . 3  |-  ( ran 
B  C_  C  ->  ( E. y ( z B y  /\  y
( A  |`  C ) x )  <->  E. y
( z B y  /\  y A x ) ) )
1110opabbidv 4213 . 2  |-  ( ran 
B  C_  C  ->  {
<. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) } )
12 df-co 4828 . 2  |-  ( ( A  |`  C )  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }
13 df-co 4828 . 2  |-  ( A  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) }
1411, 12, 133eqtr4g 2445 1  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    C_ wss 3264   class class class wbr 4154   {copab 4207   ran crn 4820    |` cres 4821    o. ccom 4823
This theorem is referenced by:  cocnvcnv1  5321  cores2  5323  relcoi2  5338  fco2  5542  fcoi2  5559  domss2  7203  canthp1lem2  8462  imasdsval2  13670  frmdss2  14736  gsumval3  15442  gsumzres  15445  gsumzaddlem  15454  dprdf1  15519  kgencn2  17511  tsmsf1o  18096  hhssims  22624  lgamcvg2  24619  cvmlift2lem9a  24770  funresfunco  27659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-xp 4825  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831
  Copyright terms: Public domain W3C validator