MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cores Structured version   Unicode version

Theorem cores 5365
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cores  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )

Proof of Theorem cores
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2951 . . . . . . 7  |-  z  e. 
_V
2 vex 2951 . . . . . . 7  |-  y  e. 
_V
31, 2brelrn 5092 . . . . . 6  |-  ( z B y  ->  y  e.  ran  B )
4 ssel 3334 . . . . . 6  |-  ( ran 
B  C_  C  ->  ( y  e.  ran  B  ->  y  e.  C ) )
5 vex 2951 . . . . . . . 8  |-  x  e. 
_V
65brres 5144 . . . . . . 7  |-  ( y ( A  |`  C ) x  <->  ( y A x  /\  y  e.  C ) )
76rbaib 874 . . . . . 6  |-  ( y  e.  C  ->  (
y ( A  |`  C ) x  <->  y A x ) )
83, 4, 7syl56 32 . . . . 5  |-  ( ran 
B  C_  C  ->  ( z B y  -> 
( y ( A  |`  C ) x  <->  y A x ) ) )
98pm5.32d 621 . . . 4  |-  ( ran 
B  C_  C  ->  ( ( z B y  /\  y ( A  |`  C ) x )  <-> 
( z B y  /\  y A x ) ) )
109exbidv 1636 . . 3  |-  ( ran 
B  C_  C  ->  ( E. y ( z B y  /\  y
( A  |`  C ) x )  <->  E. y
( z B y  /\  y A x ) ) )
1110opabbidv 4263 . 2  |-  ( ran 
B  C_  C  ->  {
<. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) } )
12 df-co 4879 . 2  |-  ( ( A  |`  C )  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y
( A  |`  C ) x ) }
13 df-co 4879 . 2  |-  ( A  o.  B )  =  { <. z ,  x >.  |  E. y ( z B y  /\  y A x ) }
1411, 12, 133eqtr4g 2492 1  |-  ( ran 
B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    C_ wss 3312   class class class wbr 4204   {copab 4257   ran crn 4871    |` cres 4872    o. ccom 4874
This theorem is referenced by:  cocnvcnv1  5372  cores2  5374  relcoi2  5389  fco2  5593  fcoi2  5610  domss2  7258  canthp1lem2  8520  imasdsval2  13734  frmdss2  14800  gsumval3  15506  gsumzres  15509  gsumzaddlem  15518  dprdf1  15583  kgencn2  17581  tsmsf1o  18166  hhssims  22767  lgamcvg2  24831  cvmlift2lem9a  24982  funresfunco  27956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882
  Copyright terms: Public domain W3C validator