MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos01bnd Structured version   Unicode version

Theorem cos01bnd 12779
Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cos01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )

Proof of Theorem cos01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 9123 . . . . . . . . 9  |-  0  e.  RR*
2 1re 9082 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 10965 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 654 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 972 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2435 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76recos4p 12732 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 16 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2440 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( cos `  A
) )
105recoscld 12737 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
1110recnd 9106 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  CC )
125resqcld 11541 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
1312rehalfcld 10206 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  RR )
14 resubcl 9357 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
152, 13, 14sylancr 645 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1615recnd 9106 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
17 ax-icn 9041 . . . . . . . . . 10  |-  _i  e.  CC
185recnd 9106 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
19 mulcl 9066 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2017, 18, 19sylancr 645 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
21 4nn0 10232 . . . . . . . . 9  |-  4  e.  NN0
226eftlcl 12700 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2320, 21, 22sylancl 644 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2423recld 11991 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2524recnd 9106 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2611, 16, 25subaddd 9421 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( cos `  A
) ) )
279, 26mpbird 224 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )  =  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
2827fveq2d 5724 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  =  ( abs `  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) ) )
2925abscld 12230 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3023abscld 12230 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
31 6nn 10129 . . . . 5  |-  6  e.  NN
32 nndivre 10027 . . . . 5  |-  ( ( ( A ^ 2 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
2 )  /  6
)  e.  RR )
3312, 31, 32sylancl 644 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  RR )
34 absrele 12105 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3523, 34syl 16 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 11390 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 21, 36sylancl 644 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 10027 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 31, 38sylancl 644 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 12777 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
41 2nn0 10230 . . . . . . . 8  |-  2  e.  NN0
4241a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  2  e.  NN0 )
43 4nn 10127 . . . . . . . . . 10  |-  4  e.  NN
4443nnzi 10297 . . . . . . . . 9  |-  4  e.  ZZ
45 2re 10061 . . . . . . . . . 10  |-  2  e.  RR
46 4re 10065 . . . . . . . . . 10  |-  4  e.  RR
47 2lt4 10138 . . . . . . . . . 10  |-  2  <  4
4845, 46, 47ltleii 9188 . . . . . . . . 9  |-  2  <_  4
49 2z 10304 . . . . . . . . . 10  |-  2  e.  ZZ
5049eluz1i 10487 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  2
)  <->  ( 4  e.  ZZ  /\  2  <_ 
4 ) )
5144, 48, 50mpbir2an 887 . . . . . . . 8  |-  4  e.  ( ZZ>= `  2 )
5251a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  2 )
)
534simp2bi 973 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
54 0re 9083 . . . . . . . . 9  |-  0  e.  RR
55 ltle 9155 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5654, 5, 55sylancr 645 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5753, 56mpd 15 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
584simp3bi 974 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
595, 42, 52, 57, 58leexp2rd 11548 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 2 ) )
60 6re 10068 . . . . . . . 8  |-  6  e.  RR
6160a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
62 6pos 10080 . . . . . . . 8  |-  0  <  6
6362a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
64 lediv1 9867 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6537, 12, 61, 63, 64syl112anc 1188 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 2 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 2 )  /  6 ) ) )
6659, 65mpbid 202 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 2 )  / 
6 ) )
6730, 39, 33, 40, 66ltletrd 9222 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 2 )  /  6 ) )
6829, 30, 33, 35, 67lelttrd 9220 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Re `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 2 )  /  6 ) )
6928, 68eqbrtrd 4224 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( cos `  A )  -  (
1  -  ( ( A ^ 2 )  /  2 ) ) ) )  <  (
( A ^ 2 )  /  6 ) )
7010, 15, 33absdifltd 12228 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) ) ) ) )
71 ax-1cn 9040 . . . . . . . 8  |-  1  e.  CC
7271a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  CC )
7313recnd 9106 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  e.  CC )
7433recnd 9106 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  e.  CC )
7572, 73, 74subsub4d 9434 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( ( A ^ 2 )  / 
2 )  +  ( ( A ^ 2 )  /  6 ) ) ) )
76 halfpm6th 10184 . . . . . . . . . . 11  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
7776simpri 449 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
7877oveq2i 6084 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
2  /  3 ) )
7912recnd 9106 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
80 2cn 10062 . . . . . . . . . . . 12  |-  2  e.  CC
81 2ne0 10075 . . . . . . . . . . . 12  |-  2  =/=  0
8280, 81reccli 9736 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  CC
8331nncni 10002 . . . . . . . . . . . 12  |-  6  e.  CC
8431nnne0i 10026 . . . . . . . . . . . 12  |-  6  =/=  0
8583, 84reccli 9736 . . . . . . . . . . 11  |-  ( 1  /  6 )  e.  CC
86 adddi 9071 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  +  ( 1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  +  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
8782, 85, 86mp3an23 1271 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8879, 87syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  +  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
8978, 88syl5eqr 2481 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
90 3cn 10064 . . . . . . . . . . 11  |-  3  e.  CC
91 3ne0 10077 . . . . . . . . . . 11  |-  3  =/=  0
9290, 91pm3.2i 442 . . . . . . . . . 10  |-  ( 3  e.  CC  /\  3  =/=  0 )
93 div12 9692 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  =  ( ( A ^ 2 )  x.  ( 2  /  3 ) ) )
9480, 92, 93mp3an13 1270 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
9579, 94syl 16 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
96 divrec 9686 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9780, 81, 96mp3an23 1271 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
9879, 97syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  2 )  =  ( ( A ^ 2 )  x.  ( 1  /  2
) ) )
99 divrec 9686 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10083, 84, 99mp3an23 1271 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10179, 100syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  6 )  =  ( ( A ^ 2 )  x.  ( 1  /  6
) ) )
10298, 101oveq12d 6091 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  +  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
10389, 95, 1023eqtr4rd 2478 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  +  ( ( A ^ 2 )  /  6 ) )  =  ( 2  x.  ( ( A ^
2 )  /  3
) ) )
104103oveq2d 6089 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  +  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
10575, 104eqtrd 2467 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  -  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) )
106105breq1d 4214 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  -  (
( A ^ 2 )  /  6 ) )  <  ( cos `  A )  <->  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) ) )
10772, 73, 74subsubd 9431 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )
10876simpli 445 . . . . . . . . . 10  |-  ( ( 1  /  2 )  -  ( 1  / 
6 ) )  =  ( 1  /  3
)
109108oveq2i 6084 . . . . . . . . 9  |-  ( ( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  /  6
) ) )  =  ( ( A ^
2 )  x.  (
1  /  3 ) )
110 subdi 9459 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( ( A ^ 2 )  x.  ( ( 1  / 
2 )  -  (
1  /  6 ) ) )  =  ( ( ( A ^
2 )  x.  (
1  /  2 ) )  -  ( ( A ^ 2 )  x.  ( 1  / 
6 ) ) ) )
11182, 85, 110mp3an23 1271 . . . . . . . . . 10  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
11279, 111syl 16 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( ( 1  /  2 )  -  ( 1  / 
6 ) ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
113109, 112syl5eqr 2481 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 1  /  3 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
114 divrec 9686 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11590, 91, 114mp3an23 1271 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11679, 115syl 16 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  =  ( ( A ^ 2 )  x.  ( 1  /  3
) ) )
11798, 101oveq12d 6091 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( ( A ^ 2 )  x.  ( 1  / 
2 ) )  -  ( ( A ^
2 )  x.  (
1  /  6 ) ) ) )
118113, 116, 1173eqtr4rd 2478 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
2 )  /  2
)  -  ( ( A ^ 2 )  /  6 ) )  =  ( ( A ^ 2 )  / 
3 ) )
119118oveq2d 6089 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( ( ( A ^ 2 )  /  2 )  -  ( ( A ^ 2 )  / 
6 ) ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
120107, 119eqtr3d 2469 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  /  6 ) )  =  ( 1  -  ( ( A ^
2 )  /  3
) ) )
121120breq2d 4216 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( cos `  A
)  <  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( ( A ^ 2 )  / 
6 ) )  <->  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) )
122106, 121anbi12d 692 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  -  ( ( A ^
2 )  /  6
) )  <  ( cos `  A )  /\  ( cos `  A )  <  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( ( A ^
2 )  /  6
) ) )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12370, 122bitrd 245 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( cos `  A
)  -  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) ) )  <  ( ( A ^ 2 )  /  6 )  <->  ( (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
)  /\  ( cos `  A )  <  (
1  -  ( ( A ^ 2 )  /  3 ) ) ) ) )
12469, 123mpbid 202 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983   _ici 8984    + caddc 8985    x. cmul 8987   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   3c3 10042   4c4 10043   6c6 10045   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   (,]cioc 10909   ^cexp 11374   !cfa 11558   Recre 11894   abscabs 12031   sum_csu 12471   cosccos 12659
This theorem is referenced by:  cos1bnd  12780  cos01gt0  12784  tangtx  20405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ioc 10913  df-ico 10914  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-fac 11559  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-cos 12665
  Copyright terms: Public domain W3C validator