MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos2t Unicode version

Theorem cos2t 12707
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
cos2t  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )

Proof of Theorem cos2t
StepHypRef Expression
1 coscl 12656 . . . 4  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
21sqcld 11449 . . 3  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  e.  CC )
3 ax-1cn 8982 . . . 4  |-  1  e.  CC
4 subsub3 9266 . . . 4  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  1  e.  CC  /\  ( ( cos `  A ) ^ 2 )  e.  CC )  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
53, 4mp3an2 1267 . . 3  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( cos `  A
) ^ 2 )  e.  CC )  -> 
( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
62, 2, 5syl2anc 643 . 2  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
7 cosadd 12694 . . . . 5  |-  ( ( A  e.  CC  /\  A  e.  CC )  ->  ( cos `  ( A  +  A )
)  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
87anidms 627 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( A  +  A ) )  =  ( ( ( cos `  A )  x.  ( cos `  A ) )  -  ( ( sin `  A )  x.  ( sin `  A ) ) ) )
9 2times 10032 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
109fveq2d 5673 . . . 4  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( cos `  ( A  +  A )
) )
111sqvald 11448 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
) ^ 2 )  =  ( ( cos `  A )  x.  ( cos `  A ) ) )
12 sincl 12655 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1312sqvald 11448 . . . . 5  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  =  ( ( sin `  A )  x.  ( sin `  A ) ) )
1411, 13oveq12d 6039 . . . 4  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) )  =  ( ( ( cos `  A
)  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  A ) ) ) )
158, 10, 143eqtr4d 2430 . . 3  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
1612sqcld 11449 . . . . . . 7  |-  ( A  e.  CC  ->  (
( sin `  A
) ^ 2 )  e.  CC )
1716, 2addcomd 9201 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) ) )
18 sincossq 12705 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( sin `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  =  1 )
1917, 18eqtr3d 2422 . . . . 5  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 )
20 subadd 9241 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
213, 20mp3an1 1266 . . . . . 6  |-  ( ( ( ( cos `  A
) ^ 2 )  e.  CC  /\  (
( sin `  A
) ^ 2 )  e.  CC )  -> 
( ( 1  -  ( ( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
222, 16, 21syl2anc 643 . . . . 5  |-  ( A  e.  CC  ->  (
( 1  -  (
( cos `  A
) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 )  <->  ( (
( cos `  A
) ^ 2 )  +  ( ( sin `  A ) ^ 2 ) )  =  1 ) )
2319, 22mpbird 224 . . . 4  |-  ( A  e.  CC  ->  (
1  -  ( ( cos `  A ) ^ 2 ) )  =  ( ( sin `  A ) ^ 2 ) )
2423oveq2d 6037 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
) ^ 2 )  -  ( 1  -  ( ( cos `  A
) ^ 2 ) ) )  =  ( ( ( cos `  A
) ^ 2 )  -  ( ( sin `  A ) ^ 2 ) ) )
2515, 24eqtr4d 2423 . 2  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( ( cos `  A ) ^ 2 )  -  ( 1  -  ( ( cos `  A ) ^ 2 ) ) ) )
2622timesd 10143 . . 3  |-  ( A  e.  CC  ->  (
2  x.  ( ( cos `  A ) ^ 2 ) )  =  ( ( ( cos `  A ) ^ 2 )  +  ( ( cos `  A
) ^ 2 ) ) )
2726oveq1d 6036 . 2  |-  ( A  e.  CC  ->  (
( 2  x.  (
( cos `  A
) ^ 2 ) )  -  1 )  =  ( ( ( ( cos `  A
) ^ 2 )  +  ( ( cos `  A ) ^ 2 ) )  -  1 ) )
286, 25, 273eqtr4d 2430 1  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  A ) )  =  ( ( 2  x.  ( ( cos `  A
) ^ 2 ) )  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   ` cfv 5395  (class class class)co 6021   CCcc 8922   1c1 8925    + caddc 8927    x. cmul 8929    - cmin 9224   2c2 9982   ^cexp 11310   sincsin 12594   cosccos 12595
This theorem is referenced by:  cos2tsin  12708  cos2bnd  12717  cospi  20248  cos2pi  20252  tangtx  20281  coskpi  20296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-ico 10855  df-fz 10977  df-fzo 11067  df-fl 11130  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-sin 12600  df-cos 12601
  Copyright terms: Public domain W3C validator