MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coscl Structured version   Unicode version

Theorem coscl 12720
Description: Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
coscl  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )

Proof of Theorem coscl
StepHypRef Expression
1 cosf 12718 . 2  |-  cos : CC
--> CC
21ffvelrni 5861 1  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   ` cfv 5446   CCcc 8980   cosccos 12659
This theorem is referenced by:  tanval  12721  tancl  12722  coscld  12724  tanneg  12741  efmival  12746  sinadd  12757  cosadd  12758  tanaddlem  12759  sinsub  12761  cossub  12762  subsin  12764  sinmul  12765  cosmul  12766  addcos  12767  subcos  12768  sincossq  12769  sin2t  12770  cos2t  12771  cos2tsin  12772  demoivreALT  12794  sinhalfpilem  20366  sinmpi  20387  cosmpi  20388  sinppi  20389  cosppi  20390  efimpi  20391  sinhalfpip  20392  sinhalfpim  20393  coshalfpip  20394  coshalfpim  20395  asinsin  20724  acoscos  20725  atandmtan  20752  atantan  20755  itgsinexplem1  27715  itgsinexp  27716  seccl  28430  cotcl  28432  recsec  28436  reccot  28438  rectan  28439  onetansqsecsq  28441  cotsqcscsq  28442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-fac 11559  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-cos 12665
  Copyright terms: Public domain W3C validator