MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq1 Structured version   Unicode version

Theorem coseq1 20420
Description: A complex number whose cosine is one is an integer multiple of  2 pi. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
coseq1  |-  ( A  e.  CC  ->  (
( cos `  A
)  =  1  <->  ( A  /  ( 2  x.  pi ) )  e.  ZZ ) )

Proof of Theorem coseq1
StepHypRef Expression
1 2cn 10060 . . . . . . . 8  |-  2  e.  CC
2 2ne0 10073 . . . . . . . 8  |-  2  =/=  0
3 divcan2 9676 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
41, 2, 3mp3an23 1271 . . . . . . 7  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
54fveq2d 5724 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( cos `  A
) )
6 halfcl 10183 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  /  2 )  e.  CC )
7 cos2tsin 12770 . . . . . . 7  |-  ( ( A  /  2 )  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
86, 7syl 16 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  ( 2  x.  ( A  /  2
) ) )  =  ( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
95, 8eqtr3d 2469 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  =  ( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
109eqeq1d 2443 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  A
)  =  1  <->  (
1  -  ( 2  x.  ( ( sin `  ( A  /  2
) ) ^ 2 ) ) )  =  1 ) )
116sincld 12721 . . . . . . . 8  |-  ( A  e.  CC  ->  ( sin `  ( A  / 
2 ) )  e.  CC )
1211sqcld 11511 . . . . . . 7  |-  ( A  e.  CC  ->  (
( sin `  ( A  /  2 ) ) ^ 2 )  e.  CC )
13 mulcl 9064 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( ( sin `  ( A  /  2 ) ) ^ 2 )  e.  CC )  ->  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  e.  CC )
141, 12, 13sylancr 645 . . . . . 6  |-  ( A  e.  CC  ->  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  e.  CC )
15 ax-1cn 9038 . . . . . . 7  |-  1  e.  CC
16 subsub23 9300 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  e.  CC  /\  1  e.  CC )  ->  (
( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) )  =  1  <->  (
1  -  1 )  =  ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
1715, 15, 16mp3an13 1270 . . . . . 6  |-  ( ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  e.  CC  ->  (
( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) )  =  1  <->  (
1  -  1 )  =  ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
1814, 17syl 16 . . . . 5  |-  ( A  e.  CC  ->  (
( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) )  =  1  <->  (
1  -  1 )  =  ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) ) )
19 eqcom 2437 . . . . . 6  |-  ( ( 1  -  1 )  =  ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  <-> 
( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  =  ( 1  -  1 ) )
20 1m1e0 10058 . . . . . . 7  |-  ( 1  -  1 )  =  0
2120eqeq2i 2445 . . . . . 6  |-  ( ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  =  ( 1  -  1 )  <->  ( 2  x.  ( ( sin `  ( A  /  2
) ) ^ 2 ) )  =  0 )
2219, 21bitri 241 . . . . 5  |-  ( ( 1  -  1 )  =  ( 2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  <-> 
( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0 )
2318, 22syl6bb 253 . . . 4  |-  ( A  e.  CC  ->  (
( 1  -  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) ) )  =  1  <->  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0 ) )
2410, 23bitrd 245 . . 3  |-  ( A  e.  CC  ->  (
( cos `  A
)  =  1  <->  (
2  x.  ( ( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0 ) )
25 mul0or 9652 . . . . 5  |-  ( ( 2  e.  CC  /\  ( ( sin `  ( A  /  2 ) ) ^ 2 )  e.  CC )  ->  (
( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0  <->  ( 2  =  0  \/  (
( sin `  ( A  /  2 ) ) ^ 2 )  =  0 ) ) )
261, 12, 25sylancr 645 . . . 4  |-  ( A  e.  CC  ->  (
( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0  <->  ( 2  =  0  \/  (
( sin `  ( A  /  2 ) ) ^ 2 )  =  0 ) ) )
27 df-ne 2600 . . . . . 6  |-  ( 2  =/=  0  <->  -.  2  =  0 )
282, 27mpbi 200 . . . . 5  |-  -.  2  =  0
29 biorf 395 . . . . 5  |-  ( -.  2  =  0  -> 
( ( ( sin `  ( A  /  2
) ) ^ 2 )  =  0  <->  (
2  =  0  \/  ( ( sin `  ( A  /  2 ) ) ^ 2 )  =  0 ) ) )
3028, 29ax-mp 8 . . . 4  |-  ( ( ( sin `  ( A  /  2 ) ) ^ 2 )  =  0  <->  ( 2  =  0  \/  ( ( sin `  ( A  /  2 ) ) ^ 2 )  =  0 ) )
3126, 30syl6bbr 255 . . 3  |-  ( A  e.  CC  ->  (
( 2  x.  (
( sin `  ( A  /  2 ) ) ^ 2 ) )  =  0  <->  ( ( sin `  ( A  / 
2 ) ) ^
2 )  =  0 ) )
32 sqeq0 11436 . . . 4  |-  ( ( sin `  ( A  /  2 ) )  e.  CC  ->  (
( ( sin `  ( A  /  2 ) ) ^ 2 )  =  0  <->  ( sin `  ( A  /  2 ) )  =  0 ) )
3311, 32syl 16 . . 3  |-  ( A  e.  CC  ->  (
( ( sin `  ( A  /  2 ) ) ^ 2 )  =  0  <->  ( sin `  ( A  /  2 ) )  =  0 ) )
3424, 31, 333bitrd 271 . 2  |-  ( A  e.  CC  ->  (
( cos `  A
)  =  1  <->  ( sin `  ( A  / 
2 ) )  =  0 ) )
35 sineq0 20419 . . 3  |-  ( ( A  /  2 )  e.  CC  ->  (
( sin `  ( A  /  2 ) )  =  0  <->  ( ( A  /  2 )  /  pi )  e.  ZZ ) )
366, 35syl 16 . 2  |-  ( A  e.  CC  ->  (
( sin `  ( A  /  2 ) )  =  0  <->  ( ( A  /  2 )  /  pi )  e.  ZZ ) )
371, 2pm3.2i 442 . . . 4  |-  ( 2  e.  CC  /\  2  =/=  0 )
38 pire 20362 . . . . . 6  |-  pi  e.  RR
3938recni 9092 . . . . 5  |-  pi  e.  CC
40 pipos 20363 . . . . . 6  |-  0  <  pi
4138, 40gt0ne0ii 9553 . . . . 5  |-  pi  =/=  0
4239, 41pm3.2i 442 . . . 4  |-  ( pi  e.  CC  /\  pi  =/=  0 )
43 divdiv1 9715 . . . 4  |-  ( ( A  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( pi  e.  CC  /\  pi  =/=  0
) )  ->  (
( A  /  2
)  /  pi )  =  ( A  / 
( 2  x.  pi ) ) )
4437, 42, 43mp3an23 1271 . . 3  |-  ( A  e.  CC  ->  (
( A  /  2
)  /  pi )  =  ( A  / 
( 2  x.  pi ) ) )
4544eleq1d 2501 . 2  |-  ( A  e.  CC  ->  (
( ( A  / 
2 )  /  pi )  e.  ZZ  <->  ( A  /  ( 2  x.  pi ) )  e.  ZZ ) )
4634, 36, 453bitrd 271 1  |-  ( A  e.  CC  ->  (
( cos `  A
)  =  1  <->  ( A  /  ( 2  x.  pi ) )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   ` cfv 5446  (class class class)co 6073   CCcc 8978   0cc0 8980   1c1 8981    x. cmul 8985    - cmin 9281    / cdiv 9667   2c2 10039   ZZcz 10272   ^cexp 11372   sincsin 12656   cosccos 12657   picpi 12659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7469  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ioo 10910  df-ioc 10911  df-ico 10912  df-icc 10913  df-fz 11034  df-fzo 11126  df-fl 11192  df-mod 11241  df-seq 11314  df-exp 11373  df-fac 11557  df-bc 11584  df-hash 11609  df-shft 11872  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-sum 12470  df-ef 12660  df-sin 12662  df-cos 12663  df-pi 12665  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-pt 13658  df-prds 13661  df-xrs 13716  df-0g 13717  df-gsum 13718  df-qtop 13723  df-imas 13724  df-xps 13726  df-mre 13801  df-mrc 13802  df-acs 13804  df-mnd 14680  df-submnd 14729  df-mulg 14805  df-cntz 15106  df-cmn 15404  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-fbas 16689  df-fg 16690  df-cnfld 16694  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-cld 17073  df-ntr 17074  df-cls 17075  df-nei 17152  df-lp 17190  df-perf 17191  df-cn 17281  df-cnp 17282  df-haus 17369  df-tx 17584  df-hmeo 17777  df-fil 17868  df-fm 17960  df-flim 17961  df-flf 17962  df-xms 18340  df-ms 18341  df-tms 18342  df-cncf 18898  df-limc 19743  df-dv 19744
  Copyright terms: Public domain W3C validator