MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosordlem Structured version   Unicode version

Theorem cosordlem 20425
Description: Lemma for cosord 20426. (Contributed by Mario Carneiro, 10-May-2014.)
Hypotheses
Ref Expression
cosord.1  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
cosord.2  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
cosord.3  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
cosordlem  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )

Proof of Theorem cosordlem
StepHypRef Expression
1 cosord.2 . . . . . . 7  |-  ( ph  ->  B  e.  ( 0 [,] pi ) )
2 0re 9083 . . . . . . . 8  |-  0  e.  RR
3 pire 20364 . . . . . . . 8  |-  pi  e.  RR
42, 3elicc2i 10968 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
51, 4sylib 189 . . . . . 6  |-  ( ph  ->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
65simp1d 969 . . . . 5  |-  ( ph  ->  B  e.  RR )
76recnd 9106 . . . 4  |-  ( ph  ->  B  e.  CC )
8 cosord.1 . . . . . . 7  |-  ( ph  ->  A  e.  ( 0 [,] pi ) )
92, 3elicc2i 10968 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
108, 9sylib 189 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1110simp1d 969 . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 9106 . . . 4  |-  ( ph  ->  A  e.  CC )
13 subcos 12768 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
147, 12, 13syl2anc 643 . . 3  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  =  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) ) )
15 2re 10061 . . . . 5  |-  2  e.  RR
16 2pos 10074 . . . . 5  |-  0  <  2
1715, 16elrpii 10607 . . . 4  |-  2  e.  RR+
186, 11readdcld 9107 . . . . . . . 8  |-  ( ph  ->  ( B  +  A
)  e.  RR )
1918rehalfcld 10206 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  RR )
2019resincld 12736 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR )
212a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
2210simp2d 970 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
23 cosord.3 . . . . . . . . . . 11  |-  ( ph  ->  A  <  B )
2421, 11, 6, 22, 23lelttrd 9220 . . . . . . . . . 10  |-  ( ph  ->  0  <  B )
25 addgtge0 9508 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( 0  < 
B  /\  0  <_  A ) )  ->  0  <  ( B  +  A
) )
266, 11, 24, 22, 25syl22anc 1185 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  +  A ) )
27 divgt0 9870 . . . . . . . . . 10  |-  ( ( ( ( B  +  A )  e.  RR  /\  0  <  ( B  +  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2815, 16, 27mpanr12 667 . . . . . . . . 9  |-  ( ( ( B  +  A
)  e.  RR  /\  0  <  ( B  +  A ) )  -> 
0  <  ( ( B  +  A )  /  2 ) )
2918, 26, 28syl2anc 643 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  +  A )  /  2 ) )
303a1i 11 . . . . . . . . 9  |-  ( ph  ->  pi  e.  RR )
3111, 6, 6, 23ltadd2dd 9221 . . . . . . . . . . 11  |-  ( ph  ->  ( B  +  A
)  <  ( B  +  B ) )
3272timesd 10202 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
3331, 32breqtrrd 4230 . . . . . . . . . 10  |-  ( ph  ->  ( B  +  A
)  <  ( 2  x.  B ) )
3415a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  RR )
3516a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <  2 )
36 ltdivmul 9874 . . . . . . . . . . 11  |-  ( ( ( B  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( B  +  A )  /  2 )  < 
B  <->  ( B  +  A )  <  (
2  x.  B ) ) )
3718, 6, 34, 35, 36syl112anc 1188 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B  +  A )  / 
2 )  <  B  <->  ( B  +  A )  <  ( 2  x.  B ) ) )
3833, 37mpbird 224 . . . . . . . . 9  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  B )
395simp3d 971 . . . . . . . . 9  |-  ( ph  ->  B  <_  pi )
4019, 6, 30, 38, 39ltletrd 9222 . . . . . . . 8  |-  ( ph  ->  ( ( B  +  A )  /  2
)  <  pi )
41 0xr 9123 . . . . . . . . 9  |-  0  e.  RR*
423rexri 9129 . . . . . . . . 9  |-  pi  e.  RR*
43 elioo2 10949 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  +  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) ) )
4441, 42, 43mp2an 654 . . . . . . . 8  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  +  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  +  A )  /  2
)  /\  ( ( B  +  A )  /  2 )  < 
pi ) )
4519, 29, 40, 44syl3anbrc 1138 . . . . . . 7  |-  ( ph  ->  ( ( B  +  A )  /  2
)  e.  ( 0 (,) pi ) )
46 sinq12gt0 20407 . . . . . . 7  |-  ( ( ( B  +  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  +  A
)  /  2 ) ) )
4745, 46syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  +  A )  /  2
) ) )
4820, 47elrpd 10638 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  +  A
)  /  2 ) )  e.  RR+ )
496, 11resubcld 9457 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
5049rehalfcld 10206 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  RR )
5150resincld 12736 . . . . . 6  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR )
5211, 6posdifd 9605 . . . . . . . . . 10  |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
5323, 52mpbid 202 . . . . . . . . 9  |-  ( ph  ->  0  <  ( B  -  A ) )
54 divgt0 9870 . . . . . . . . . 10  |-  ( ( ( ( B  -  A )  e.  RR  /\  0  <  ( B  -  A ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5515, 16, 54mpanr12 667 . . . . . . . . 9  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  -> 
0  <  ( ( B  -  A )  /  2 ) )
5649, 53, 55syl2anc 643 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( B  -  A )  /  2 ) )
57 rehalfcl 10186 . . . . . . . . . 10  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
583, 57mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  e.  RR )
596, 11subge02d 9610 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  A  <->  ( B  -  A )  <_  B ) )
6022, 59mpbid 202 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  A
)  <_  B )
6149, 6, 30, 60, 39letrd 9219 . . . . . . . . . 10  |-  ( ph  ->  ( B  -  A
)  <_  pi )
62 lediv1 9867 . . . . . . . . . . 11  |-  ( ( ( B  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( B  -  A )  <_  pi 
<->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) ) )
6349, 30, 34, 35, 62syl112anc 1188 . . . . . . . . . 10  |-  ( ph  ->  ( ( B  -  A )  <_  pi  <->  ( ( B  -  A
)  /  2 )  <_  ( pi  / 
2 ) ) )
6461, 63mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <_  ( pi  /  2 ) )
65 pipos 20365 . . . . . . . . . . 11  |-  0  <  pi
663, 65elrpii 10607 . . . . . . . . . 10  |-  pi  e.  RR+
67 rphalflt 10630 . . . . . . . . . 10  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
6866, 67mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( pi  /  2
)  <  pi )
6950, 58, 30, 64, 68lelttrd 9220 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A )  /  2
)  <  pi )
70 elioo2 10949 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( B  -  A )  /  2
)  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) ) )
7141, 42, 70mp2an 654 . . . . . . . 8  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  <->  ( (
( B  -  A
)  /  2 )  e.  RR  /\  0  <  ( ( B  -  A )  /  2
)  /\  ( ( B  -  A )  /  2 )  < 
pi ) )
7250, 56, 69, 71syl3anbrc 1138 . . . . . . 7  |-  ( ph  ->  ( ( B  -  A )  /  2
)  e.  ( 0 (,) pi ) )
73 sinq12gt0 20407 . . . . . . 7  |-  ( ( ( B  -  A
)  /  2 )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( B  -  A
)  /  2 ) ) )
7472, 73syl 16 . . . . . 6  |-  ( ph  ->  0  <  ( sin `  ( ( B  -  A )  /  2
) ) )
7551, 74elrpd 10638 . . . . 5  |-  ( ph  ->  ( sin `  (
( B  -  A
)  /  2 ) )  e.  RR+ )
7648, 75rpmulcld 10656 . . . 4  |-  ( ph  ->  ( ( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )
77 rpmulcl 10625 . . . 4  |-  ( ( 2  e.  RR+  /\  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) )  e.  RR+ )  ->  ( 2  x.  ( ( sin `  ( ( B  +  A )  /  2
) )  x.  ( sin `  ( ( B  -  A )  / 
2 ) ) ) )  e.  RR+ )
7817, 76, 77sylancr 645 . . 3  |-  ( ph  ->  ( 2  x.  (
( sin `  (
( B  +  A
)  /  2 ) )  x.  ( sin `  ( ( B  -  A )  /  2
) ) ) )  e.  RR+ )
7914, 78eqeltrd 2509 . 2  |-  ( ph  ->  ( ( cos `  A
)  -  ( cos `  B ) )  e.  RR+ )
806recoscld 12737 . . 3  |-  ( ph  ->  ( cos `  B
)  e.  RR )
8111recoscld 12737 . . 3  |-  ( ph  ->  ( cos `  A
)  e.  RR )
82 difrp 10637 . . 3  |-  ( ( ( cos `  B
)  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8380, 81, 82syl2anc 643 . 2  |-  ( ph  ->  ( ( cos `  B
)  <  ( cos `  A )  <->  ( ( cos `  A )  -  ( cos `  B ) )  e.  RR+ )
)
8479, 83mpbird 224 1  |-  ( ph  ->  ( cos `  B
)  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   2c2 10041   RR+crp 10604   (,)cioo 10908   [,]cicc 10911   sincsin 12658   cosccos 12659   picpi 12661
This theorem is referenced by:  cosord  20426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator