MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosq14gt0 Unicode version

Theorem cosq14gt0 19878
Description: The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )

Proof of Theorem cosq14gt0
StepHypRef Expression
1 pire 19832 . . . . . 6  |-  pi  e.  RR
2 rehalfcl 9938 . . . . . 6  |-  ( pi  e.  RR  ->  (
pi  /  2 )  e.  RR )
31, 2ax-mp 8 . . . . 5  |-  ( pi 
/  2 )  e.  RR
4 elioore 10686 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  RR )
5 resubcl 9111 . . . . 5  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  / 
2 )  -  A
)  e.  RR )
63, 4, 5sylancr 644 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  RR )
7 ressxr 8876 . . . . . . . 8  |-  RR  C_  RR*
83renegcli 9108 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR
97, 8sselii 3177 . . . . . . 7  |-  -u (
pi  /  2 )  e.  RR*
107, 3sselii 3177 . . . . . . 7  |-  ( pi 
/  2 )  e. 
RR*
11 elioo2 10697 . . . . . . 7  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
129, 10, 11mp2an 653 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) )
1312simp3bi 972 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  <  ( pi  / 
2 ) )
14 posdif 9267 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  < 
( pi  /  2
)  <->  0  <  (
( pi  /  2
)  -  A ) ) )
154, 3, 14sylancl 643 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  (
pi  /  2 )  <->  0  <  ( ( pi  /  2 )  -  A ) ) )
1613, 15mpbid 201 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( (
pi  /  2 )  -  A ) )
171recni 8849 . . . . . . . 8  |-  pi  e.  CC
18 halfcl 9937 . . . . . . . 8  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
1917, 18ax-mp 8 . . . . . . 7  |-  ( pi 
/  2 )  e.  CC
2019negcli 9114 . . . . . . 7  |-  -u (
pi  /  2 )  e.  CC
2117, 19negsubi 9124 . . . . . . . 8  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
22 2halves 9940 . . . . . . . . . 10  |-  ( pi  e.  CC  ->  (
( pi  /  2
)  +  ( pi 
/  2 ) )  =  pi )
2317, 22ax-mp 8 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2417, 19, 19, 23subaddrii 9135 . . . . . . . 8  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2521, 24eqtri 2303 . . . . . . 7  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2619, 17, 20, 25subaddrii 9135 . . . . . 6  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
2712simp2bi 971 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <  A )
2826, 27syl5eqbr 4056 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <  A )
29 ltsub23 9254 . . . . . . 7  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR  /\  pi  e.  RR )  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
303, 1, 29mp3an13 1268 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
314, 30syl 15 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  A )  <  pi  <->  ( ( pi  /  2
)  -  pi )  <  A ) )
3228, 31mpbird 223 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  <  pi )
33 0xr 8878 . . . . 5  |-  0  e.  RR*
347, 1sselii 3177 . . . . 5  |-  pi  e.  RR*
35 elioo2 10697 . . . . 5  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) ) )
3633, 34, 35mp2an 653 . . . 4  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) )
376, 16, 32, 36syl3anbrc 1136 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi ) )
38 sinq12gt0 19875 . . 3  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( pi  /  2
)  -  A ) ) )
3937, 38syl 15 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  / 
2 )  -  A
) ) )
404recnd 8861 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  CC )
41 sinhalfpim 19861 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  A ) )  =  ( cos `  A
) )
4240, 41syl 15 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( sin `  (
( pi  /  2
)  -  A ) )  =  ( cos `  A ) )
4339, 42breqtrd 4047 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740   RR*cxr 8866    < clt 8867    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   (,)cioo 10656   sincsin 12345   cosccos 12346   picpi 12348
This theorem is referenced by:  tanord1  19899  logcnlem4  19992  asinsinlem  20187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator