MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosq14gt0 Structured version   Unicode version

Theorem cosq14gt0 20411
Description: The cosine of a number strictly between  -u pi  /  2 and  pi  /  2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
cosq14gt0  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )

Proof of Theorem cosq14gt0
StepHypRef Expression
1 halfpire 20368 . . . . 5  |-  ( pi 
/  2 )  e.  RR
2 elioore 10939 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  RR )
3 resubcl 9358 . . . . 5  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  / 
2 )  -  A
)  e.  RR )
41, 2, 3sylancr 645 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  RR )
51renegcli 9355 . . . . . . . 8  |-  -u (
pi  /  2 )  e.  RR
65rexri 9130 . . . . . . 7  |-  -u (
pi  /  2 )  e.  RR*
71rexri 9130 . . . . . . 7  |-  ( pi 
/  2 )  e. 
RR*
8 elioo2 10950 . . . . . . 7  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
pi  /  2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) ) )
96, 7, 8mp2an 654 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( pi  /  2
) ) )
109simp3bi 974 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  <  ( pi  / 
2 ) )
11 posdif 9514 . . . . . 6  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  < 
( pi  /  2
)  <->  0  <  (
( pi  /  2
)  -  A ) ) )
122, 1, 11sylancl 644 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( A  <  (
pi  /  2 )  <->  0  <  ( ( pi  /  2 )  -  A ) ) )
1310, 12mpbid 202 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( (
pi  /  2 )  -  A ) )
14 pire 20365 . . . . . . . . 9  |-  pi  e.  RR
1514recni 9095 . . . . . . . 8  |-  pi  e.  CC
16 halfcl 10186 . . . . . . . 8  |-  ( pi  e.  CC  ->  (
pi  /  2 )  e.  CC )
1715, 16ax-mp 8 . . . . . . 7  |-  ( pi 
/  2 )  e.  CC
1817negcli 9361 . . . . . . 7  |-  -u (
pi  /  2 )  e.  CC
1915, 17negsubi 9371 . . . . . . . 8  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
20 2halves 10189 . . . . . . . . . 10  |-  ( pi  e.  CC  ->  (
( pi  /  2
)  +  ( pi 
/  2 ) )  =  pi )
2115, 20ax-mp 8 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2215, 17, 17, 21subaddrii 9382 . . . . . . . 8  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2319, 22eqtri 2456 . . . . . . 7  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2417, 15, 18, 23subaddrii 9382 . . . . . 6  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
259simp2bi 973 . . . . . 6  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <  A )
2624, 25syl5eqbr 4238 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <  A )
27 ltsub23 9501 . . . . . . 7  |-  ( ( ( pi  /  2
)  e.  RR  /\  A  e.  RR  /\  pi  e.  RR )  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
281, 14, 27mp3an13 1270 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  -  A
)  <  pi  <->  ( (
pi  /  2 )  -  pi )  < 
A ) )
292, 28syl 16 . . . . 5  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  A )  <  pi  <->  ( ( pi  /  2
)  -  pi )  <  A ) )
3026, 29mpbird 224 . . . 4  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  <  pi )
31 0xr 9124 . . . . 5  |-  0  e.  RR*
3214rexri 9130 . . . . 5  |-  pi  e.  RR*
33 elioo2 10950 . . . . 5  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) ) )
3431, 32, 33mp2an 654 . . . 4  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  <->  ( (
( pi  /  2
)  -  A )  e.  RR  /\  0  <  ( ( pi  / 
2 )  -  A
)  /\  ( (
pi  /  2 )  -  A )  < 
pi ) )
354, 13, 30, 34syl3anbrc 1138 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  A
)  e.  ( 0 (,) pi ) )
36 sinq12gt0 20408 . . 3  |-  ( ( ( pi  /  2
)  -  A )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  (
( pi  /  2
)  -  A ) ) )
3735, 36syl 16 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  / 
2 )  -  A
) ) )
382recnd 9107 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  ->  A  e.  CC )
39 sinhalfpim 20394 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  A ) )  =  ( cos `  A
) )
4038, 39syl 16 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
( sin `  (
( pi  /  2
)  -  A ) )  =  ( cos `  A ) )
4137, 40breqtrd 4229 1  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) )  -> 
0  <  ( cos `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4205   ` cfv 5447  (class class class)co 6074   CCcc 8981   RRcr 8982   0cc0 8983    + caddc 8986   RR*cxr 9112    < clt 9113    - cmin 9284   -ucneg 9285    / cdiv 9670   2c2 10042   (,)cioo 10909   sincsin 12659   cosccos 12660   picpi 12662
This theorem is referenced by:  tanord1  20432  logcnlem4  20529  asinsinlem  20724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ioc 10914  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-fac 11560  df-bc 11587  df-hash 11612  df-shft 11875  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-limsup 12258  df-clim 12275  df-rlim 12276  df-sum 12473  df-ef 12663  df-sin 12665  df-cos 12666  df-pi 12668  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-fbas 16692  df-fg 16693  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cld 17076  df-ntr 17077  df-cls 17078  df-nei 17155  df-lp 17193  df-perf 17194  df-cn 17284  df-cnp 17285  df-haus 17372  df-tx 17587  df-hmeo 17780  df-fil 17871  df-fm 17963  df-flim 17964  df-flf 17965  df-xms 18343  df-ms 18344  df-tms 18345  df-cncf 18901  df-limc 19746  df-dv 19747
  Copyright terms: Public domain W3C validator