MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss2 Unicode version

Theorem coss2 4856
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
Assertion
Ref Expression
coss2  |-  ( A 
C_  B  ->  ( C  o.  A )  C_  ( C  o.  B
) )

Proof of Theorem coss2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6  |-  ( A 
C_  B  ->  A  C_  B )
21ssbrd 4080 . . . . 5  |-  ( A 
C_  B  ->  (
x A y  ->  x B y ) )
32anim1d 547 . . . 4  |-  ( A 
C_  B  ->  (
( x A y  /\  y C z )  ->  ( x B y  /\  y C z ) ) )
43eximdv 1612 . . 3  |-  ( A 
C_  B  ->  ( E. y ( x A y  /\  y C z )  ->  E. y
( x B y  /\  y C z ) ) )
54ssopab2dv 4309 . 2  |-  ( A 
C_  B  ->  { <. x ,  z >.  |  E. y ( x A y  /\  y C z ) }  C_  {
<. x ,  z >.  |  E. y ( x B y  /\  y C z ) } )
6 df-co 4714 . 2  |-  ( C  o.  A )  =  { <. x ,  z
>.  |  E. y
( x A y  /\  y C z ) }
7 df-co 4714 . 2  |-  ( C  o.  B )  =  { <. x ,  z
>.  |  E. y
( x B y  /\  y C z ) }
85, 6, 73sstr4g 3232 1  |-  ( A 
C_  B  ->  ( C  o.  A )  C_  ( C  o.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    C_ wss 3165   class class class wbr 4039   {copab 4092    o. ccom 4709
This theorem is referenced by:  coeq2  4858  funss  5289  tposss  6251  dftpos4  6269  tsrdir  14376  rtrclreclem.min  24059  mvdco  27491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-in 3172  df-ss 3179  df-br 4040  df-opab 4094  df-co 4714
  Copyright terms: Public domain W3C validator