MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr Unicode version

Theorem cotr 5055
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4698 . . . 4  |-  ( R  o.  R )  =  { <. x ,  z
>.  |  E. y
( x R y  /\  y R z ) }
21relopabi 4811 . . 3  |-  Rel  ( R  o.  R )
3 ssrel 4776 . . 3  |-  ( Rel  ( R  o.  R
)  ->  ( ( R  o.  R )  C_  R  <->  A. x A. z
( <. x ,  z
>.  e.  ( R  o.  R )  ->  <. x ,  z >.  e.  R
) ) )
42, 3ax-mp 8 . 2  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R ) )
5 vex 2791 . . . . . . . 8  |-  x  e. 
_V
6 vex 2791 . . . . . . . 8  |-  z  e. 
_V
75, 6opelco 4853 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( R  o.  R
)  <->  E. y ( x R y  /\  y R z ) )
8 df-br 4024 . . . . . . . 8  |-  ( x R z  <->  <. x ,  z >.  e.  R
)
98bicomi 193 . . . . . . 7  |-  ( <.
x ,  z >.  e.  R  <->  x R z )
107, 9imbi12i 316 . . . . . 6  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  ( E. y
( x R y  /\  y R z )  ->  x R
z ) )
11 19.23v 1832 . . . . . 6  |-  ( A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  ( E. y ( x R y  /\  y R z )  ->  x R z ) )
1210, 11bitr4i 243 . . . . 5  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. y ( ( x R y  /\  y R z )  ->  x R z ) )
1312albii 1553 . . . 4  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. z A. y ( ( x R y  /\  y R z )  ->  x R z ) )
14 alcom 1711 . . . 4  |-  ( A. z A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1513, 14bitri 240 . . 3  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1615albii 1553 . 2  |-  ( A. x A. z ( <.
x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
174, 16bitri 240 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1684    C_ wss 3152   <.cop 3643   class class class wbr 4023    o. ccom 4693   Rel wrel 4694
This theorem is referenced by:  xpidtr  5065  trin2  5066  dfer2  6661  pslem  14315  letsr  14349  dirtr  14358  preotr2  25235  filnetlem3  26329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-co 4698
  Copyright terms: Public domain W3C validator