MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr Unicode version

Theorem cotr 5186
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cotr  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Distinct variable group:    x, y, z, R

Proof of Theorem cotr
StepHypRef Expression
1 df-co 4827 . . . 4  |-  ( R  o.  R )  =  { <. x ,  z
>.  |  E. y
( x R y  /\  y R z ) }
21relopabi 4940 . . 3  |-  Rel  ( R  o.  R )
3 ssrel 4904 . . 3  |-  ( Rel  ( R  o.  R
)  ->  ( ( R  o.  R )  C_  R  <->  A. x A. z
( <. x ,  z
>.  e.  ( R  o.  R )  ->  <. x ,  z >.  e.  R
) ) )
42, 3ax-mp 8 . 2  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R ) )
5 vex 2902 . . . . . . . 8  |-  x  e. 
_V
6 vex 2902 . . . . . . . 8  |-  z  e. 
_V
75, 6opelco 4984 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( R  o.  R
)  <->  E. y ( x R y  /\  y R z ) )
8 df-br 4154 . . . . . . . 8  |-  ( x R z  <->  <. x ,  z >.  e.  R
)
98bicomi 194 . . . . . . 7  |-  ( <.
x ,  z >.  e.  R  <->  x R z )
107, 9imbi12i 317 . . . . . 6  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  ( E. y
( x R y  /\  y R z )  ->  x R
z ) )
11 19.23v 1903 . . . . . 6  |-  ( A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  ( E. y ( x R y  /\  y R z )  ->  x R z ) )
1210, 11bitr4i 244 . . . . 5  |-  ( (
<. x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. y ( ( x R y  /\  y R z )  ->  x R z ) )
1312albii 1572 . . . 4  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. z A. y ( ( x R y  /\  y R z )  ->  x R z ) )
14 alcom 1744 . . . 4  |-  ( A. z A. y ( ( x R y  /\  y R z )  ->  x R z )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1513, 14bitri 241 . . 3  |-  ( A. z ( <. x ,  z >.  e.  ( R  o.  R )  ->  <. x ,  z
>.  e.  R )  <->  A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
1615albii 1572 . 2  |-  ( A. x A. z ( <.
x ,  z >.  e.  ( R  o.  R
)  ->  <. x ,  z >.  e.  R
)  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )
174, 16bitri 241 1  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    e. wcel 1717    C_ wss 3263   <.cop 3760   class class class wbr 4153    o. ccom 4822   Rel wrel 4823
This theorem is referenced by:  xpidtr  5196  trin2  5197  dfer2  6842  pslem  14565  letsr  14599  dirtr  14608  filnetlem3  26100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-br 4154  df-opab 4208  df-xp 4824  df-rel 4825  df-co 4827
  Copyright terms: Public domain W3C validator