MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coundir Structured version   Unicode version

Theorem coundir 5372
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundir  |-  ( ( A  u.  B )  o.  C )  =  ( ( A  o.  C )  u.  ( B  o.  C )
)

Proof of Theorem coundir
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 4284 . . 3  |-  ( {
<. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  { <. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )  =  { <. x ,  z >.  |  ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) ) }
2 brun 4258 . . . . . . . 8  |-  ( y ( A  u.  B
) z  <->  ( y A z  \/  y B z ) )
32anbi2i 676 . . . . . . 7  |-  ( ( x C y  /\  y ( A  u.  B ) z )  <-> 
( x C y  /\  ( y A z  \/  y B z ) ) )
4 andi 838 . . . . . . 7  |-  ( ( x C y  /\  ( y A z  \/  y B z ) )  <->  ( (
x C y  /\  y A z )  \/  ( x C y  /\  y B z ) ) )
53, 4bitri 241 . . . . . 6  |-  ( ( x C y  /\  y ( A  u.  B ) z )  <-> 
( ( x C y  /\  y A z )  \/  (
x C y  /\  y B z ) ) )
65exbii 1592 . . . . 5  |-  ( E. y ( x C y  /\  y ( A  u.  B ) z )  <->  E. y
( ( x C y  /\  y A z )  \/  (
x C y  /\  y B z ) ) )
7 19.43 1615 . . . . 5  |-  ( E. y ( ( x C y  /\  y A z )  \/  ( x C y  /\  y B z ) )  <->  ( E. y ( x C y  /\  y A z )  \/  E. y ( x C y  /\  y B z ) ) )
86, 7bitr2i 242 . . . 4  |-  ( ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) )  <->  E. y ( x C y  /\  y ( A  u.  B ) z ) )
98opabbii 4272 . . 3  |-  { <. x ,  z >.  |  ( E. y ( x C y  /\  y A z )  \/ 
E. y ( x C y  /\  y B z ) ) }  =  { <. x ,  z >.  |  E. y ( x C y  /\  y ( A  u.  B ) z ) }
101, 9eqtri 2456 . 2  |-  ( {
<. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  { <. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )  =  { <. x ,  z >.  |  E. y ( x C y  /\  y ( A  u.  B ) z ) }
11 df-co 4887 . . 3  |-  ( A  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y A z ) }
12 df-co 4887 . . 3  |-  ( B  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y B z ) }
1311, 12uneq12i 3499 . 2  |-  ( ( A  o.  C )  u.  ( B  o.  C ) )  =  ( { <. x ,  z >.  |  E. y ( x C y  /\  y A z ) }  u.  {
<. x ,  z >.  |  E. y ( x C y  /\  y B z ) } )
14 df-co 4887 . 2  |-  ( ( A  u.  B )  o.  C )  =  { <. x ,  z
>.  |  E. y
( x C y  /\  y ( A  u.  B ) z ) }
1510, 13, 143eqtr4ri 2467 1  |-  ( ( A  u.  B )  o.  C )  =  ( ( A  o.  C )  u.  ( B  o.  C )
)
Colors of variables: wff set class
Syntax hints:    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    u. cun 3318   class class class wbr 4212   {copab 4265    o. ccom 4882
This theorem is referenced by:  diophrw  26817  diophren  26874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325  df-br 4213  df-opab 4267  df-co 4887
  Copyright terms: Public domain W3C validator