MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphcjcl Unicode version

Theorem cphcjcl 18717
Description: The scalar field of a complex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
cphsca.f  |-  F  =  (Scalar `  W )
cphsca.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
cphcjcl  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  (
* `  A )  e.  K )

Proof of Theorem cphcjcl
StepHypRef Expression
1 cphsca.f . . . . . . 7  |-  F  =  (Scalar `  W )
2 cphsca.k . . . . . . 7  |-  K  =  ( Base `  F
)
31, 2cphsca 18713 . . . . . 6  |-  ( W  e.  CPreHil  ->  F  =  (flds  K ) )
43fveq2d 5609 . . . . 5  |-  ( W  e.  CPreHil  ->  ( * r `
 F )  =  ( * r `  (flds  K
) ) )
5 fvex 5619 . . . . . . 7  |-  ( Base `  F )  e.  _V
62, 5eqeltri 2428 . . . . . 6  |-  K  e. 
_V
7 eqid 2358 . . . . . . 7  |-  (flds  K )  =  (flds  K )
8 cnfldcj 16483 . . . . . . 7  |-  *  =  ( * r ` fld )
97, 8ressstarv 13353 . . . . . 6  |-  ( K  e.  _V  ->  *  =  ( * r `
 (flds  K ) ) )
106, 9ax-mp 8 . . . . 5  |-  *  =  ( * r `  (flds  K
) )
114, 10syl6eqr 2408 . . . 4  |-  ( W  e.  CPreHil  ->  ( * r `
 F )  =  * )
1211adantr 451 . . 3  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  (
* r `  F
)  =  * )
1312fveq1d 5607 . 2  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  (
( * r `  F ) `  A
)  =  ( * `
 A ) )
14 cphphl 18705 . . . 4  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
151phlsrng 16635 . . . 4  |-  ( W  e.  PreHil  ->  F  e.  *Ring )
1614, 15syl 15 . . 3  |-  ( W  e.  CPreHil  ->  F  e.  *Ring )
17 eqid 2358 . . . 4  |-  ( * r `  F )  =  ( * r `
 F )
1817, 2srngcl 15713 . . 3  |-  ( ( F  e.  *Ring  /\  A  e.  K )  ->  (
( * r `  F ) `  A
)  e.  K )
1916, 18sylan 457 . 2  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  (
( * r `  F ) `  A
)  e.  K )
2013, 19eqeltrrd 2433 1  |-  ( ( W  e.  CPreHil  /\  A  e.  K )  ->  (
* `  A )  e.  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   ` cfv 5334  (class class class)co 5942   *ccj 11671   Basecbs 13239   ↾s cress 13240   * rcstv 13301  Scalarcsca 13302   *Ringcsr 15702  ℂfldccnfld 16476   PreHilcphl 16628   CPreHilccph 18700
This theorem is referenced by:  cphabscl  18719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-fz 10872  df-cj 11674  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-tset 13318  df-ple 13319  df-ds 13321  df-unif 13322  df-0g 13497  df-mhm 14508  df-ghm 14774  df-mgp 15419  df-rng 15433  df-ur 15435  df-rnghom 15589  df-staf 15703  df-srng 15704  df-cnfld 16477  df-phl 16630  df-cph 18702
  Copyright terms: Public domain W3C validator