MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphlmod Unicode version

Theorem cphlmod 18714
Description: A complex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.)
Assertion
Ref Expression
cphlmod  |-  ( W  e.  CPreHil  ->  W  e.  LMod )

Proof of Theorem cphlmod
StepHypRef Expression
1 cphnlm 18712 . 2  |-  ( W  e.  CPreHil  ->  W  e. NrmMod )
2 nlmlmod 18291 . 2  |-  ( W  e. NrmMod  ->  W  e.  LMod )
31, 2syl 15 1  |-  ( W  e.  CPreHil  ->  W  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1710   LModclmod 15726  NrmModcnlm 18205   CPreHilccph 18706
This theorem is referenced by:  cphclm  18729  cph2ass  18752  cphtchnm  18765  nmparlem  18773  minveclem1  18892  minveclem2  18894  minveclem4  18900  minveclem6  18902  pjthlem1  18905  pjthlem2  18906
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-nul 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-xp 4777  df-cnv 4779  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fv 5345  df-ov 5948  df-nlm 18211  df-cph 18708
  Copyright terms: Public domain W3C validator