MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem1 Unicode version

Theorem cplem1 7646
Description: Lemma for the Collection Principle cp 7648. (Contributed by NM, 17-Oct-2003.)
Hypotheses
Ref Expression
cplem1.1  |-  C  =  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }
cplem1.2  |-  D  = 
U_ x  e.  A  C
Assertion
Ref Expression
cplem1  |-  A. x  e.  A  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) )
Distinct variable groups:    x, y,
z, A    y, B, z
Allowed substitution hints:    B( x)    C( x, y, z)    D( x, y, z)

Proof of Theorem cplem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scott0 7643 . . . . . 6  |-  ( B  =  (/)  <->  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }  =  (/) )
2 cplem1.1 . . . . . . 7  |-  C  =  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }
32eqeq1i 2365 . . . . . 6  |-  ( C  =  (/)  <->  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }  =  (/) )
41, 3bitr4i 243 . . . . 5  |-  ( B  =  (/)  <->  C  =  (/) )
54necon3bii 2553 . . . 4  |-  ( B  =/=  (/)  <->  C  =/=  (/) )
6 n0 3540 . . . 4  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
75, 6bitri 240 . . 3  |-  ( B  =/=  (/)  <->  E. w  w  e.  C )
8 ssrab2 3334 . . . . . . . . 9  |-  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z ) }  C_  B
92, 8eqsstri 3284 . . . . . . . 8  |-  C  C_  B
109sseli 3252 . . . . . . 7  |-  ( w  e.  C  ->  w  e.  B )
1110a1i 10 . . . . . 6  |-  ( x  e.  A  ->  (
w  e.  C  ->  w  e.  B )
)
12 ssiun2 4024 . . . . . . . 8  |-  ( x  e.  A  ->  C  C_ 
U_ x  e.  A  C )
13 cplem1.2 . . . . . . . 8  |-  D  = 
U_ x  e.  A  C
1412, 13syl6sseqr 3301 . . . . . . 7  |-  ( x  e.  A  ->  C  C_  D )
1514sseld 3255 . . . . . 6  |-  ( x  e.  A  ->  (
w  e.  C  ->  w  e.  D )
)
1611, 15jcad 519 . . . . 5  |-  ( x  e.  A  ->  (
w  e.  C  -> 
( w  e.  B  /\  w  e.  D
) ) )
17 inelcm 3585 . . . . 5  |-  ( ( w  e.  B  /\  w  e.  D )  ->  ( B  i^i  D
)  =/=  (/) )
1816, 17syl6 29 . . . 4  |-  ( x  e.  A  ->  (
w  e.  C  -> 
( B  i^i  D
)  =/=  (/) ) )
1918exlimdv 1636 . . 3  |-  ( x  e.  A  ->  ( E. w  w  e.  C  ->  ( B  i^i  D )  =/=  (/) ) )
207, 19syl5bi 208 . 2  |-  ( x  e.  A  ->  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) ) )
2120rgen 2684 1  |-  A. x  e.  A  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   {crab 2623    i^i cin 3227    C_ wss 3228   (/)c0 3531   U_ciun 3984   ` cfv 5334   rankcrnk 7522
This theorem is referenced by:  cplem2  7647
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-recs 6472  df-rdg 6507  df-r1 7523  df-rank 7524
  Copyright terms: Public domain W3C validator