MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem1 Unicode version

Theorem cplem1 7559
Description: Lemma for the Collection Principle cp 7561. (Contributed by NM, 17-Oct-2003.)
Hypotheses
Ref Expression
cplem1.1  |-  C  =  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }
cplem1.2  |-  D  = 
U_ x  e.  A  C
Assertion
Ref Expression
cplem1  |-  A. x  e.  A  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) )
Distinct variable groups:    x, y,
z, A    y, B, z
Allowed substitution hints:    B( x)    C( x, y, z)    D( x, y, z)

Proof of Theorem cplem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scott0 7556 . . . . . 6  |-  ( B  =  (/)  <->  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }  =  (/) )
2 cplem1.1 . . . . . . 7  |-  C  =  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }
32eqeq1i 2290 . . . . . 6  |-  ( C  =  (/)  <->  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z
) }  =  (/) )
41, 3bitr4i 243 . . . . 5  |-  ( B  =  (/)  <->  C  =  (/) )
54necon3bii 2478 . . . 4  |-  ( B  =/=  (/)  <->  C  =/=  (/) )
6 n0 3464 . . . 4  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
75, 6bitri 240 . . 3  |-  ( B  =/=  (/)  <->  E. w  w  e.  C )
8 ssrab2 3258 . . . . . . . . 9  |-  { y  e.  B  |  A. z  e.  B  ( rank `  y )  C_  ( rank `  z ) }  C_  B
92, 8eqsstri 3208 . . . . . . . 8  |-  C  C_  B
109sseli 3176 . . . . . . 7  |-  ( w  e.  C  ->  w  e.  B )
1110a1i 10 . . . . . 6  |-  ( x  e.  A  ->  (
w  e.  C  ->  w  e.  B )
)
12 ssiun2 3945 . . . . . . . 8  |-  ( x  e.  A  ->  C  C_ 
U_ x  e.  A  C )
13 cplem1.2 . . . . . . . 8  |-  D  = 
U_ x  e.  A  C
1412, 13syl6sseqr 3225 . . . . . . 7  |-  ( x  e.  A  ->  C  C_  D )
1514sseld 3179 . . . . . 6  |-  ( x  e.  A  ->  (
w  e.  C  ->  w  e.  D )
)
1611, 15jcad 519 . . . . 5  |-  ( x  e.  A  ->  (
w  e.  C  -> 
( w  e.  B  /\  w  e.  D
) ) )
17 inelcm 3509 . . . . 5  |-  ( ( w  e.  B  /\  w  e.  D )  ->  ( B  i^i  D
)  =/=  (/) )
1816, 17syl6 29 . . . 4  |-  ( x  e.  A  ->  (
w  e.  C  -> 
( B  i^i  D
)  =/=  (/) ) )
1918exlimdv 1664 . . 3  |-  ( x  e.  A  ->  ( E. w  w  e.  C  ->  ( B  i^i  D )  =/=  (/) ) )
207, 19syl5bi 208 . 2  |-  ( x  e.  A  ->  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) ) )
2120rgen 2608 1  |-  A. x  e.  A  ( B  =/=  (/)  ->  ( B  i^i  D )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547    i^i cin 3151    C_ wss 3152   (/)c0 3455   U_ciun 3905   ` cfv 5255   rankcrnk 7435
This theorem is referenced by:  cplem2  7560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator