Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crimmt2 Unicode version

Theorem crimmt2 25147
Description: Composition of a restricted identity and a mapping (using the maps to notation). See fcoi2 5416. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
crimmt2  |-  ( F : A --> B  -> 
( ( x  e.  B  |->  x )  o.  F )  =  F )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem crimmt2
StepHypRef Expression
1 mptresid 5004 . . 3  |-  ( x  e.  B  |->  x )  =  (  _I  |`  B )
21coeq1i 4843 . 2  |-  ( ( x  e.  B  |->  x )  o.  F )  =  ( (  _I  |`  B )  o.  F
)
3 fcoi2 5416 . 2  |-  ( F : A --> B  -> 
( (  _I  |`  B )  o.  F )  =  F )
42, 3syl5eq 2327 1  |-  ( F : A --> B  -> 
( ( x  e.  B  |->  x )  o.  F )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. cmpt 4077    _I cid 4304    |` cres 4691    o. ccom 4693   -->wf 5251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-fun 5257  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator