MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crne0 Structured version   Unicode version

Theorem crne0 9985
Description: The real representation of complex numbers is nonzero iff one of its terms is nonzero. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
crne0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )

Proof of Theorem crne0
StepHypRef Expression
1 ax-icn 9041 . . . . . . . 8  |-  _i  e.  CC
21mul01i 9248 . . . . . . 7  |-  ( _i  x.  0 )  =  0
32oveq2i 6084 . . . . . 6  |-  ( 0  +  ( _i  x.  0 ) )  =  ( 0  +  0 )
4 00id 9233 . . . . . 6  |-  ( 0  +  0 )  =  0
53, 4eqtri 2455 . . . . 5  |-  ( 0  +  ( _i  x.  0 ) )  =  0
65eqeq2i 2445 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  =  ( 0  +  ( _i  x.  0 ) )  <->  ( A  +  ( _i  x.  B ) )  =  0 )
7 0re 9083 . . . . 5  |-  0  e.  RR
8 cru 9984 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  e.  RR  /\  0  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( 0  +  ( _i  x.  0 ) )  <-> 
( A  =  0  /\  B  =  0 ) ) )
97, 7, 8mpanr12 667 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  =  ( 0  +  ( _i  x.  0 ) )  <-> 
( A  =  0  /\  B  =  0 ) ) )
106, 9syl5bbr 251 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  =  0  <-> 
( A  =  0  /\  B  =  0 ) ) )
1110necon3abid 2631 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  =/=  0  <->  -.  ( A  =  0  /\  B  =  0 ) ) )
12 neorian 2685 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
1311, 12syl6rbbr 256 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598  (class class class)co 6073   RRcr 8981   0cc0 8982   _ici 8984    + caddc 8985    x. cmul 8987
This theorem is referenced by:  crreczi  11496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670
  Copyright terms: Public domain W3C validator