Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm23 Unicode version

Theorem crngm23 26303
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1  |-  G  =  ( 1st `  R
)
crngm.2  |-  H  =  ( 2nd `  R
)
crngm.3  |-  X  =  ran  G
Assertion
Ref Expression
crngm23  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( ( A H C ) H B ) )

Proof of Theorem crngm23
StepHypRef Expression
1 crngm.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 crngm.2 . . . . 5  |-  H  =  ( 2nd `  R
)
3 crngm.3 . . . . 5  |-  X  =  ran  G
41, 2, 3crngocom 26302 . . . 4  |-  ( ( R  e. CRingOps  /\  B  e.  X  /\  C  e.  X )  ->  ( B H C )  =  ( C H B ) )
543adant3r1 1162 . . 3  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B H C )  =  ( C H B ) )
65oveq2d 6036 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H ( B H C ) )  =  ( A H ( C H B ) ) )
7 crngorngo 26301 . . 3  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
81, 2, 3rngoass 21823 . . 3  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( A H ( B H C ) ) )
97, 8sylan 458 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( A H ( B H C ) ) )
101, 2, 3rngoass 21823 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
11103exp2 1171 . . . . 5  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( C  e.  X  ->  ( B  e.  X  ->  (
( A H C ) H B )  =  ( A H ( C H B ) ) ) ) ) )
1211com34 79 . . . 4  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
( A H C ) H B )  =  ( A H ( C H B ) ) ) ) ) )
13123imp2 1168 . . 3  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
147, 13sylan 458 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
156, 9, 143eqtr4d 2429 1  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( ( A H C ) H B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4819   ` cfv 5394  (class class class)co 6020   1stc1st 6286   2ndc2nd 6287   RingOpscrngo 21811  CRingOpsccring 26296
This theorem is referenced by:  crngm4  26304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-ov 6023  df-1st 6288  df-2nd 6289  df-rngo 21812  df-com2 21847  df-crngo 26297
  Copyright terms: Public domain W3C validator