MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngridl Structured version   Unicode version

Theorem crngridl 16301
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i  |-  I  =  (LIdeal `  R )
crngridl.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
crngridl  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )

Proof of Theorem crngridl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2  |-  I  =  (LIdeal `  R )
2 eqidd 2436 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
3 crngridl.o . . . . . 6  |-  O  =  (oppr
`  R )
4 eqid 2435 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
53, 4opprbas 15726 . . . . 5  |-  ( Base `  R )  =  (
Base `  O )
65a1i 11 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  O )
)
7 ssv 3360 . . . . 5  |-  ( Base `  R )  C_  _V
87a1i 11 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  C_  _V )
9 eqid 2435 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
103, 9oppradd 15727 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  O )
1110oveqi 6086 . . . . 5  |-  ( x ( +g  `  R
) y )  =  ( x ( +g  `  O ) y )
1211a1i 11 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
13 ovex 6098 . . . . 5  |-  ( x ( .r `  R
) y )  e. 
_V
1413a1i 11 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  _V )
15 eqid 2435 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
16 eqid 2435 . . . . . 6  |-  ( .r
`  O )  =  ( .r `  O
)
174, 15, 3, 16crngoppr 15724 . . . . 5  |-  ( ( R  e.  CRing  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  O ) y ) )
18173expb 1154 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  =  ( x ( .r `  O
) y ) )
192, 6, 8, 12, 14, 18lidlrsppropd 16293 . . 3  |-  ( R  e.  CRing  ->  ( (LIdeal `  R )  =  (LIdeal `  O )  /\  (RSpan `  R )  =  (RSpan `  O ) ) )
2019simpld 446 . 2  |-  ( R  e.  CRing  ->  (LIdeal `  R
)  =  (LIdeal `  O ) )
211, 20syl5eq 2479 1  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    C_ wss 3312   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   .rcmulr 13522   CRingccrg 15653  opprcoppr 15719  LIdealclidl 16234  RSpancrsp 16235
This theorem is referenced by:  crng2idl  16302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-cmn 15406  df-mgp 15641  df-cring 15656  df-oppr 15720  df-lss 16001  df-lsp 16040  df-sra 16236  df-rgmod 16237  df-lidl 16238  df-rsp 16239
  Copyright terms: Public domain W3C validator