MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Unicode version

Theorem crre 11874
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )

Proof of Theorem crre
StepHypRef Expression
1 recn 9036 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 9005 . . . . 5  |-  _i  e.  CC
3 recn 9036 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 9030 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 645 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 9028 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 464 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 reval 11866 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
97, 8syl 16 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
10 cjcl 11865 . . . . . 6  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
* `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
117, 10syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
127, 11addcld 9063 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
1312halfcld 10168 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
141adantr 452 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
15 recl 11870 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
167, 15syl 16 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
179, 16eqeltrrd 2479 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  RR )
18 simpl 444 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
1917, 18resubcld 9421 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR )
202a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  _i  e.  CC )
213adantl 453 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
222, 21, 4sylancr 645 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  B
)  e.  CC )
237, 11subcld 9367 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
2423halfcld 10168 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
2520, 22, 24subdid 9445 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( _i  x.  B
)  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) )  /  2 ) ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
2614, 22, 14pnpcand 9404 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( _i  x.  B )  -  A ) )
2722, 14, 22pnpcan2d 9405 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  ( A  +  ( _i  x.  B ) ) )  =  ( ( _i  x.  B )  -  A ) )
2826, 27eqtr4d 2439 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B
) ) ) )
2928oveq1d 6055 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3014, 14addcld 9063 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  A
)  e.  CC )
317, 11, 30addsubd 9388 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )
3222, 22addcld 9063 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  B )  +  ( _i  x.  B ) )  e.  CC )
3332, 7, 11subsubd 9395 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3429, 31, 333eqtr4d 2446 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
35142timesd 10166 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
3635oveq2d 6056 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( A  +  A
) ) )
37222timesd 10166 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  +  ( _i  x.  B ) ) )
3837oveq1d 6055 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) ) )
3934, 36, 383eqtr4d 2446 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
4039oveq1d 6055 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) ) )  /  2 ) )
41 2cn 10026 . . . . . . . . . . 11  |-  2  e.  CC
42 mulcl 9030 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
4341, 14, 42sylancr 645 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  e.  CC )
4441a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
45 2ne0 10039 . . . . . . . . . . 11  |-  2  =/=  0
4645a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  =/=  0 )
4712, 43, 44, 46divsubdird 9785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  ( ( 2  x.  A )  / 
2 ) ) )
48 mulcl 9030 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( 2  x.  ( _i  x.  B
) )  e.  CC )
4941, 22, 48sylancr 645 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  e.  CC )
5049, 23, 44, 46divsubdird 9785 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5140, 47, 503eqtr3d 2444 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5214, 44, 46divcan3d 9751 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  A )  /  2
)  =  A )
5352oveq2d 6056 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )
5422, 44, 46divcan3d 9751 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  /  2
)  =  ( _i  x.  B ) )
5554oveq1d 6055 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  / 
2 )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) )  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5651, 53, 553eqtr3d 2444 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5756oveq2d 6056 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( _i  x.  ( ( _i  x.  B )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
5820, 20, 21mulassd 9067 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  =  ( _i  x.  ( _i  x.  B ) ) )
5920, 23, 44, 46divassd 9781 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
6058, 59oveq12d 6058 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
6125, 57, 603eqtr4d 2446 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( ( ( _i  x.  _i )  x.  B )  -  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
) ) )
62 ixi 9607 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
63 1re 9046 . . . . . . . . 9  |-  1  e.  RR
6463renegcli 9318 . . . . . . . 8  |-  -u 1  e.  RR
6562, 64eqeltri 2474 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
66 simpr 448 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
67 remulcl 9031 . . . . . . 7  |-  ( ( ( _i  x.  _i )  e.  RR  /\  B  e.  RR )  ->  (
( _i  x.  _i )  x.  B )  e.  RR )
6865, 66, 67sylancr 645 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  e.  RR )
69 cjth 11863 . . . . . . . . 9  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  RR  /\  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR ) )
7069simprd 450 . . . . . . . 8  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
_i  x.  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )  e.  RR )
717, 70syl 16 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR )
7271rehalfcld 10170 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  e.  RR )
7368, 72resubcld 9421 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  e.  RR )
7461, 73eqeltrd 2478 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )
75 rimul 9947 . . . 4  |-  ( ( ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR  /\  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7619, 74, 75syl2anc 643 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7713, 14, 76subeq0d 9375 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  =  A )
789, 77eqtrd 2436 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   2c2 10005   *ccj 11856   Recre 11857
This theorem is referenced by:  crim  11875  replim  11876  mulre  11881  recj  11884  reneg  11885  readd  11886  remullem  11888  rei  11916  crrei  11952  crred  11991  rennim  11999  absreimsq  12052  4sqlem4  13275  2sqlem2  21101  cnre2csqima  24262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-2 10014  df-cj 11859  df-re 11860
  Copyright terms: Public domain W3C validator