MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crt Unicode version

Theorem crt 12846
Description: The Chinese Remainder Theorem: the function that maps  x to its remainder classes  mod  M and  mod  N is 1-1 and onto when  M and  N are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crt.1  |-  S  =  ( 0..^ ( M  x.  N ) )
crt.2  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
crt.3  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
crt.4  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
Assertion
Ref Expression
crt  |-  ( ph  ->  F : S -1-1-onto-> T )
Distinct variable groups:    x, M    ph, x    x, S    x, T    x, N
Allowed substitution hint:    F( x)

Proof of Theorem crt
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10875 . . . . . 6  |-  ( x  e.  ( 0..^ ( M  x.  N ) )  ->  x  e.  ZZ )
2 crt.1 . . . . . 6  |-  S  =  ( 0..^ ( M  x.  N ) )
31, 2eleq2s 2375 . . . . 5  |-  ( x  e.  S  ->  x  e.  ZZ )
4 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5 crt.4 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
65simp1d 967 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
76adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  M  e.  NN )
8 zmodfzo 10992 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  NN )  ->  ( x  mod  M
)  e.  ( 0..^ M ) )
94, 7, 8syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  M )  e.  ( 0..^ M ) )
105simp2d 968 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  N  e.  NN )
12 zmodfzo 10992 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  NN )  ->  ( x  mod  N
)  e.  ( 0..^ N ) )
134, 11, 12syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  N )  e.  ( 0..^ N ) )
14 opelxpi 4721 . . . . . . 7  |-  ( ( ( x  mod  M
)  e.  ( 0..^ M )  /\  (
x  mod  N )  e.  ( 0..^ N ) )  ->  <. ( x  mod  M ) ,  ( x  mod  N
) >.  e.  ( ( 0..^ M )  X.  ( 0..^ N ) ) )
159, 13, 14syl2anc 642 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  (
( 0..^ M )  X.  ( 0..^ N ) ) )
16 crt.2 . . . . . 6  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
1715, 16syl6eleqr 2374 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
183, 17sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
19 crt.3 . . . 4  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
2018, 19fmptd 5684 . . 3  |-  ( ph  ->  F : S --> T )
21 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  M )  =  ( y  mod 
M ) )
22 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  N )  =  ( y  mod 
N ) )
2321, 22opeq12d 3804 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( y  mod  M ) ,  ( y  mod 
N ) >. )
24 opex 4237 . . . . . . . . 9  |-  <. (
y  mod  M ) ,  ( y  mod 
N ) >.  e.  _V
2523, 19, 24fvmpt 5602 . . . . . . . 8  |-  ( y  e.  S  ->  ( F `  y )  =  <. ( y  mod 
M ) ,  ( y  mod  N )
>. )
2625ad2antrl 708 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  y
)  =  <. (
y  mod  M ) ,  ( y  mod 
N ) >. )
27 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  M )  =  ( z  mod 
M ) )
28 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  N )  =  ( z  mod 
N ) )
2927, 28opeq12d 3804 . . . . . . . . 9  |-  ( x  =  z  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >. )
30 opex 4237 . . . . . . . . 9  |-  <. (
z  mod  M ) ,  ( z  mod 
N ) >.  e.  _V
3129, 19, 30fvmpt 5602 . . . . . . . 8  |-  ( z  e.  S  ->  ( F `  z )  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. )
3231ad2antll 709 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  z
)  =  <. (
z  mod  M ) ,  ( z  mod 
N ) >. )
3326, 32eqeq12d 2297 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. ) )
34 ovex 5883 . . . . . . 7  |-  ( y  mod  M )  e. 
_V
35 ovex 5883 . . . . . . 7  |-  ( y  mod  N )  e. 
_V
3634, 35opth 4245 . . . . . 6  |-  ( <.
( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. 
<->  ( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) )
3733, 36syl6bb 252 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <-> 
( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
386adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  NN )
3938nnzd 10116 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  ZZ )
4010adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  NN )
4140nnzd 10116 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  ZZ )
42 simprl 732 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  S )
4342, 2syl6eleq 2373 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ( 0..^ ( M  x.  N
) ) )
44 elfzoelz 10875 . . . . . . . . 9  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  e.  ZZ )
4543, 44syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
46 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
4746, 2syl6eleq 2373 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ( 0..^ ( M  x.  N
) ) )
48 elfzoelz 10875 . . . . . . . . 9  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  e.  ZZ )
4947, 48syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
5045, 49zsubcld 10122 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  -  z
)  e.  ZZ )
515simp3d 969 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
5251adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  gcd  N
)  =  1 )
53 coprmdvds2 12782 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( y  -  z
)  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M 
||  ( y  -  z )  /\  N  ||  ( y  -  z
) )  ->  ( M  x.  N )  ||  ( y  -  z
) ) )
5439, 41, 50, 52, 53syl31anc 1185 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) )  ->  ( M  x.  N )  ||  (
y  -  z ) ) )
55 moddvds 12538 . . . . . . . 8  |-  ( ( M  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  M
)  =  ( z  mod  M )  <->  M  ||  (
y  -  z ) ) )
5638, 45, 49, 55syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
M )  =  ( z  mod  M )  <-> 
M  ||  ( y  -  z ) ) )
57 moddvds 12538 . . . . . . . 8  |-  ( ( N  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  N
)  =  ( z  mod  N )  <->  N  ||  (
y  -  z ) ) )
5840, 45, 49, 57syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( y  -  z ) ) )
5956, 58anbi12d 691 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  <->  ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) ) ) )
6045zred 10117 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  RR )
6138, 40nnmulcld 9793 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  NN )
6261nnrpd 10389 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  RR+ )
63 elfzole1 10882 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  y )
6443, 63syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  y )
65 elfzolt2 10883 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  <  ( M  x.  N ) )
6643, 65syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  <  ( M  x.  N ) )
67 modid 10993 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  ( M  x.  N
)  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  ( M  x.  N ) ) )  ->  ( y  mod  ( M  x.  N
) )  =  y )
6860, 62, 64, 66, 67syl22anc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  ( M  x.  N )
)  =  y )
6949zred 10117 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  RR )
70 elfzole1 10882 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  z )
7147, 70syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  z )
72 elfzolt2 10883 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  <  ( M  x.  N ) )
7347, 72syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  <  ( M  x.  N ) )
74 modid 10993 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  ( M  x.  N
)  e.  RR+ )  /\  ( 0  <_  z  /\  z  <  ( M  x.  N ) ) )  ->  ( z  mod  ( M  x.  N
) )  =  z )
7569, 62, 71, 73, 74syl22anc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  ( M  x.  N )
)  =  z )
7668, 75eqeq12d 2297 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
y  =  z ) )
77 moddvds 12538 . . . . . . . 8  |-  ( ( ( M  x.  N
)  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  ( M  x.  N )
)  =  ( z  mod  ( M  x.  N ) )  <->  ( M  x.  N )  ||  (
y  -  z ) ) )
7861, 45, 49, 77syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
7976, 78bitr3d 246 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  =  z  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
8054, 59, 793imtr4d 259 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  ->  y  =  z ) )
8137, 80sylbid 206 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
8281ralrimivva 2635 . . 3  |-  ( ph  ->  A. y  e.  S  A. z  e.  S  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
83 dff13 5783 . . 3  |-  ( F : S -1-1-> T  <->  ( F : S --> T  /\  A. y  e.  S  A. z  e.  S  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
8420, 82, 83sylanbrc 645 . 2  |-  ( ph  ->  F : S -1-1-> T
)
85 nnnn0 9972 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
86 nnnn0 9972 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
87 nn0mulcl 10000 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
88 hashfzo0 11384 . . . . . . . . 9  |-  ( ( M  x.  N )  e.  NN0  ->  ( # `  ( 0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
8987, 88syl 15 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( 0..^ ( M  x.  N
) ) )  =  ( M  x.  N
) )
90 fzofi 11036 . . . . . . . . . 10  |-  ( 0..^ M )  e.  Fin
91 fzofi 11036 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
92 hashxp 11386 . . . . . . . . . 10  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  ( # `
 ( ( 0..^ M )  X.  (
0..^ N ) ) )  =  ( (
# `  ( 0..^ M ) )  x.  ( # `  (
0..^ N ) ) ) )
9390, 91, 92mp2an 653 . . . . . . . . 9  |-  ( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( ( # `  ( 0..^ M ) )  x.  ( # `  ( 0..^ N ) ) )
94 hashfzo0 11384 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( # `  ( 0..^ M ) )  =  M )
95 hashfzo0 11384 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( # `  ( 0..^ N ) )  =  N )
9694, 95oveqan12d 5877 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( # `  (
0..^ M ) )  x.  ( # `  (
0..^ N ) ) )  =  ( M  x.  N ) )
9793, 96syl5eq 2327 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( M  x.  N ) )
9889, 97eqtr4d 2318 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( 0..^ ( M  x.  N
) ) )  =  ( # `  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
99 fzofi 11036 . . . . . . . 8  |-  ( 0..^ ( M  x.  N
) )  e.  Fin
100 xpfi 7128 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )
10190, 91, 100mp2an 653 . . . . . . . 8  |-  ( ( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin
102 hashen 11346 . . . . . . . 8  |-  ( ( ( 0..^ ( M  x.  N ) )  e.  Fin  /\  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )  ->  ( ( # `  ( 0..^ ( M  x.  N ) ) )  =  ( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  <-> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) ) )
10399, 101, 102mp2an 653 . . . . . . 7  |-  ( (
# `  ( 0..^ ( M  x.  N
) ) )  =  ( # `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) )
10498, 103sylib 188 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
10585, 86, 104syl2an 463 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
1066, 10, 105syl2anc 642 . . . 4  |-  ( ph  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
107106, 2, 163brtr4g 4055 . . 3  |-  ( ph  ->  S  ~~  T )
10816, 101eqeltri 2353 . . 3  |-  T  e. 
Fin
109 f1finf1o 7086 . . 3  |-  ( ( S  ~~  T  /\  T  e.  Fin )  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
110107, 108, 109sylancl 643 . 2  |-  ( ph  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
11184, 110mpbid 201 1  |-  ( ph  ->  F : S -1-1-onto-> T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   <.cop 3643   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   RR+crp 10354  ..^cfzo 10870    mod cmo 10973   #chash 11337    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  phimullem  12847
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686
  Copyright terms: Public domain W3C validator