MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crt Unicode version

Theorem crt 12862
Description: The Chinese Remainder Theorem: the function that maps  x to its remainder classes  mod  M and  mod  N is 1-1 and onto when  M and  N are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crt.1  |-  S  =  ( 0..^ ( M  x.  N ) )
crt.2  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
crt.3  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
crt.4  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
Assertion
Ref Expression
crt  |-  ( ph  ->  F : S -1-1-onto-> T )
Distinct variable groups:    x, M    ph, x    x, S    x, T    x, N
Allowed substitution hint:    F( x)

Proof of Theorem crt
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10891 . . . . . 6  |-  ( x  e.  ( 0..^ ( M  x.  N ) )  ->  x  e.  ZZ )
2 crt.1 . . . . . 6  |-  S  =  ( 0..^ ( M  x.  N ) )
31, 2eleq2s 2388 . . . . 5  |-  ( x  e.  S  ->  x  e.  ZZ )
4 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5 crt.4 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
65simp1d 967 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
76adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  M  e.  NN )
8 zmodfzo 11008 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  NN )  ->  ( x  mod  M
)  e.  ( 0..^ M ) )
94, 7, 8syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  M )  e.  ( 0..^ M ) )
105simp2d 968 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  N  e.  NN )
12 zmodfzo 11008 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  NN )  ->  ( x  mod  N
)  e.  ( 0..^ N ) )
134, 11, 12syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  N )  e.  ( 0..^ N ) )
14 opelxpi 4737 . . . . . . 7  |-  ( ( ( x  mod  M
)  e.  ( 0..^ M )  /\  (
x  mod  N )  e.  ( 0..^ N ) )  ->  <. ( x  mod  M ) ,  ( x  mod  N
) >.  e.  ( ( 0..^ M )  X.  ( 0..^ N ) ) )
159, 13, 14syl2anc 642 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  (
( 0..^ M )  X.  ( 0..^ N ) ) )
16 crt.2 . . . . . 6  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
1715, 16syl6eleqr 2387 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
183, 17sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
19 crt.3 . . . 4  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
2018, 19fmptd 5700 . . 3  |-  ( ph  ->  F : S --> T )
21 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  M )  =  ( y  mod 
M ) )
22 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  N )  =  ( y  mod 
N ) )
2321, 22opeq12d 3820 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( y  mod  M ) ,  ( y  mod 
N ) >. )
24 opex 4253 . . . . . . . . 9  |-  <. (
y  mod  M ) ,  ( y  mod 
N ) >.  e.  _V
2523, 19, 24fvmpt 5618 . . . . . . . 8  |-  ( y  e.  S  ->  ( F `  y )  =  <. ( y  mod 
M ) ,  ( y  mod  N )
>. )
2625ad2antrl 708 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  y
)  =  <. (
y  mod  M ) ,  ( y  mod 
N ) >. )
27 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  M )  =  ( z  mod 
M ) )
28 oveq1 5881 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  N )  =  ( z  mod 
N ) )
2927, 28opeq12d 3820 . . . . . . . . 9  |-  ( x  =  z  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >. )
30 opex 4253 . . . . . . . . 9  |-  <. (
z  mod  M ) ,  ( z  mod 
N ) >.  e.  _V
3129, 19, 30fvmpt 5618 . . . . . . . 8  |-  ( z  e.  S  ->  ( F `  z )  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. )
3231ad2antll 709 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  z
)  =  <. (
z  mod  M ) ,  ( z  mod 
N ) >. )
3326, 32eqeq12d 2310 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. ) )
34 ovex 5899 . . . . . . 7  |-  ( y  mod  M )  e. 
_V
35 ovex 5899 . . . . . . 7  |-  ( y  mod  N )  e. 
_V
3634, 35opth 4261 . . . . . 6  |-  ( <.
( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. 
<->  ( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) )
3733, 36syl6bb 252 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <-> 
( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
386adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  NN )
3938nnzd 10132 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  ZZ )
4010adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  NN )
4140nnzd 10132 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  ZZ )
42 simprl 732 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  S )
4342, 2syl6eleq 2386 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ( 0..^ ( M  x.  N
) ) )
44 elfzoelz 10891 . . . . . . . . 9  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  e.  ZZ )
4543, 44syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
46 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
4746, 2syl6eleq 2386 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ( 0..^ ( M  x.  N
) ) )
48 elfzoelz 10891 . . . . . . . . 9  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  e.  ZZ )
4947, 48syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
5045, 49zsubcld 10138 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  -  z
)  e.  ZZ )
515simp3d 969 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
5251adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  gcd  N
)  =  1 )
53 coprmdvds2 12798 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( y  -  z
)  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M 
||  ( y  -  z )  /\  N  ||  ( y  -  z
) )  ->  ( M  x.  N )  ||  ( y  -  z
) ) )
5439, 41, 50, 52, 53syl31anc 1185 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) )  ->  ( M  x.  N )  ||  (
y  -  z ) ) )
55 moddvds 12554 . . . . . . . 8  |-  ( ( M  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  M
)  =  ( z  mod  M )  <->  M  ||  (
y  -  z ) ) )
5638, 45, 49, 55syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
M )  =  ( z  mod  M )  <-> 
M  ||  ( y  -  z ) ) )
57 moddvds 12554 . . . . . . . 8  |-  ( ( N  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  N
)  =  ( z  mod  N )  <->  N  ||  (
y  -  z ) ) )
5840, 45, 49, 57syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( y  -  z ) ) )
5956, 58anbi12d 691 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  <->  ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) ) ) )
6045zred 10133 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  RR )
6138, 40nnmulcld 9809 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  NN )
6261nnrpd 10405 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  RR+ )
63 elfzole1 10898 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  y )
6443, 63syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  y )
65 elfzolt2 10899 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  <  ( M  x.  N ) )
6643, 65syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  <  ( M  x.  N ) )
67 modid 11009 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  ( M  x.  N
)  e.  RR+ )  /\  ( 0  <_  y  /\  y  <  ( M  x.  N ) ) )  ->  ( y  mod  ( M  x.  N
) )  =  y )
6860, 62, 64, 66, 67syl22anc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  ( M  x.  N )
)  =  y )
6949zred 10133 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  RR )
70 elfzole1 10898 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  z )
7147, 70syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  z )
72 elfzolt2 10899 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  <  ( M  x.  N ) )
7347, 72syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  <  ( M  x.  N ) )
74 modid 11009 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  ( M  x.  N
)  e.  RR+ )  /\  ( 0  <_  z  /\  z  <  ( M  x.  N ) ) )  ->  ( z  mod  ( M  x.  N
) )  =  z )
7569, 62, 71, 73, 74syl22anc 1183 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  ( M  x.  N )
)  =  z )
7668, 75eqeq12d 2310 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
y  =  z ) )
77 moddvds 12554 . . . . . . . 8  |-  ( ( ( M  x.  N
)  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  ( M  x.  N )
)  =  ( z  mod  ( M  x.  N ) )  <->  ( M  x.  N )  ||  (
y  -  z ) ) )
7861, 45, 49, 77syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
7976, 78bitr3d 246 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  =  z  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
8054, 59, 793imtr4d 259 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  ->  y  =  z ) )
8137, 80sylbid 206 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
8281ralrimivva 2648 . . 3  |-  ( ph  ->  A. y  e.  S  A. z  e.  S  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
83 dff13 5799 . . 3  |-  ( F : S -1-1-> T  <->  ( F : S --> T  /\  A. y  e.  S  A. z  e.  S  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
8420, 82, 83sylanbrc 645 . 2  |-  ( ph  ->  F : S -1-1-> T
)
85 nnnn0 9988 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
86 nnnn0 9988 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
87 nn0mulcl 10016 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
88 hashfzo0 11400 . . . . . . . . 9  |-  ( ( M  x.  N )  e.  NN0  ->  ( # `  ( 0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
8987, 88syl 15 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( 0..^ ( M  x.  N
) ) )  =  ( M  x.  N
) )
90 fzofi 11052 . . . . . . . . . 10  |-  ( 0..^ M )  e.  Fin
91 fzofi 11052 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
92 hashxp 11402 . . . . . . . . . 10  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  ( # `
 ( ( 0..^ M )  X.  (
0..^ N ) ) )  =  ( (
# `  ( 0..^ M ) )  x.  ( # `  (
0..^ N ) ) ) )
9390, 91, 92mp2an 653 . . . . . . . . 9  |-  ( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( ( # `  ( 0..^ M ) )  x.  ( # `  ( 0..^ N ) ) )
94 hashfzo0 11400 . . . . . . . . . 10  |-  ( M  e.  NN0  ->  ( # `  ( 0..^ M ) )  =  M )
95 hashfzo0 11400 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( # `  ( 0..^ N ) )  =  N )
9694, 95oveqan12d 5893 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( # `  (
0..^ M ) )  x.  ( # `  (
0..^ N ) ) )  =  ( M  x.  N ) )
9793, 96syl5eq 2340 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( M  x.  N ) )
9889, 97eqtr4d 2331 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( # `  ( 0..^ ( M  x.  N
) ) )  =  ( # `  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
99 fzofi 11052 . . . . . . . 8  |-  ( 0..^ ( M  x.  N
) )  e.  Fin
100 xpfi 7144 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )
10190, 91, 100mp2an 653 . . . . . . . 8  |-  ( ( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin
102 hashen 11362 . . . . . . . 8  |-  ( ( ( 0..^ ( M  x.  N ) )  e.  Fin  /\  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )  ->  ( ( # `  ( 0..^ ( M  x.  N ) ) )  =  ( # `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  <-> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) ) )
10399, 101, 102mp2an 653 . . . . . . 7  |-  ( (
# `  ( 0..^ ( M  x.  N
) ) )  =  ( # `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) )
10498, 103sylib 188 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
10585, 86, 104syl2an 463 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
1066, 10, 105syl2anc 642 . . . 4  |-  ( ph  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
107106, 2, 163brtr4g 4071 . . 3  |-  ( ph  ->  S  ~~  T )
10816, 101eqeltri 2366 . . 3  |-  T  e. 
Fin
109 f1finf1o 7102 . . 3  |-  ( ( S  ~~  T  /\  T  e.  Fin )  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
110107, 108, 109sylancl 643 . 2  |-  ( ph  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
11184, 110mpbid 201 1  |-  ( ph  ->  F : S -1-1-onto-> T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   -->wf 5267   -1-1->wf1 5268   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    ~~ cen 6876   Fincfn 6879   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   NN0cn0 9981   ZZcz 10040   RR+crp 10370  ..^cfzo 10886    mod cmo 10989   #chash 11353    || cdivides 12547    gcd cgcd 12701
This theorem is referenced by:  phimullem  12863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702
  Copyright terms: Public domain W3C validator