Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb2 Structured version   Unicode version

Theorem csb2 3245
 Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that can be free in but cannot occur in . (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 3244 . 2
2 sbc5 3177 . . 3
32abbii 2547 . 2
41, 3eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wa 359  wex 1550   wceq 1652   wcel 1725  cab 2421  wsbc 3153  csb 3243 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244
 Copyright terms: Public domain W3C validator