Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbabg Structured version   Unicode version

Theorem csbabg 3302
 Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()   (,)

Proof of Theorem csbabg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbccom 3224 . . . 4
2 df-clab 2422 . . . . 5
3 sbsbc 3157 . . . . 5
42, 3bitri 241 . . . 4
5 df-clab 2422 . . . . . 6
6 sbsbc 3157 . . . . . 6
75, 6bitri 241 . . . . 5
87sbcbii 3208 . . . 4
91, 4, 83bitr4i 269 . . 3
10 sbcel2g 3264 . . 3
119, 10syl5rbb 250 . 2
1211eqrdv 2433 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  wsb 1658   wcel 1725  cab 2421  wsbc 3153  csb 3243 This theorem is referenced by:  csbsng  3859  csbunig  4015  csbxpg  4897  csbrng  5106  csbfv12gALT  5731  abfmpeld  24058  abfmpel  24059  csbdmg  27939  csbingVD  28923  csbsngVD  28932  csbxpgVD  28933  csbrngVD  28935  csbunigVD  28937  csbfv12gALTVD  28938 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244
 Copyright terms: Public domain W3C validator