MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbabg Unicode version

Theorem csbabg 3142
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
csbabg  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  ph }  =  { y  |  [. A  /  x ]. ph }
)
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)    V( x, y)

Proof of Theorem csbabg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbccom 3062 . . . 4  |-  ( [. z  /  y ]. [. A  /  x ]. ph  <->  [. A  /  x ]. [. z  / 
y ]. ph )
2 df-clab 2270 . . . . 5  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [ z  /  y ] [. A  /  x ]. ph )
3 sbsbc 2995 . . . . 5  |-  ( [ z  /  y ]
[. A  /  x ]. ph  <->  [. z  /  y ]. [. A  /  x ]. ph )
42, 3bitri 240 . . . 4  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [. z  / 
y ]. [. A  /  x ]. ph )
5 df-clab 2270 . . . . . 6  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
6 sbsbc 2995 . . . . . 6  |-  ( [ z  /  y ]
ph 
<-> 
[. z  /  y ]. ph )
75, 6bitri 240 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [. z  / 
y ]. ph )
87sbcbii 3046 . . . 4  |-  ( [. A  /  x ]. z  e.  { y  |  ph } 
<-> 
[. A  /  x ]. [. z  /  y ]. ph )
91, 4, 83bitr4i 268 . . 3  |-  ( z  e.  { y  | 
[. A  /  x ]. ph }  <->  [. A  /  x ]. z  e.  {
y  |  ph }
)
10 sbcel2g 3102 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  { y  |  ph }  <->  z  e.  [_ A  /  x ]_ { y  |  ph } ) )
119, 10syl5rbb 249 . 2  |-  ( A  e.  V  ->  (
z  e.  [_ A  /  x ]_ { y  |  ph }  <->  z  e.  { y  |  [. A  /  x ]. ph }
) )
1211eqrdv 2281 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  ph }  =  { y  |  [. A  /  x ]. ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   [wsb 1629    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081
This theorem is referenced by:  csbsng  3692  csbunig  3835  csbxpg  4716  csbrng  4923  csbfv12gALT  5536  csbdmg  27392  csbingVD  28033  csbsngVD  28042  csbxpgVD  28043  csbrngVD  28045  csbunigVD  28047  csbfv12gALTVD  28048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082
  Copyright terms: Public domain W3C validator