Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbaovg Unicode version

Theorem csbaovg 28148
Description: Move class substitution in and out of an operation. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
csbaovg  |-  ( A  e.  D  ->  [_ A  /  x ]_ (( B F C))  = (( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C))  )

Proof of Theorem csbaovg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3097 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ (( B F C))  =  [_ A  /  x ]_ (( B F C))  )
2 csbeq1 3097 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ F  = 
[_ A  /  x ]_ F )
3 csbeq1 3097 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
4 csbeq1 3097 . . . 4  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4aoveq123d 28146 . . 3  |-  ( y  =  A  -> (( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C))  = (( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C))  )
61, 5eqeq12d 2310 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ (( B F C))  = (( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C))  <->  [_ A  /  x ]_ (( B F C))  = (( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C))  )
)
7 vex 2804 . . 3  |-  y  e. 
_V
8 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ B
9 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ F
10 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ C
118, 9, 10nfaov 28147 . . 3  |-  F/_ x (( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C))
12 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  F  =  [_ y  /  x ]_ F )
13 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
14 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1512, 13, 14aoveq123d 28146 . . 3  |-  ( x  =  y  -> (( B F C))  = (( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C))  )
167, 11, 15csbief 3135 . 2  |-  [_ y  /  x ]_ (( B F C))  = (( [_ y  /  x ]_ B [_ y  /  x ]_ F [_ y  /  x ]_ C))
176, 16vtoclg 2856 1  |-  ( A  e.  D  ->  [_ A  /  x ]_ (( B F C))  = (( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ C))  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   [_csb 3094   ((caov 28076
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279  df-dfat 28077  df-afv 28078  df-aov 28079
  Copyright terms: Public domain W3C validator