MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbco3gOLD Unicode version

Theorem csbco3gOLD 3139
Description: Composition of two class substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 27-Nov-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
csbco3g.1  |-  ( x  =  A  ->  B  =  D )
Assertion
Ref Expression
csbco3gOLD  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  [_ D  /  y ]_ C
)
Distinct variable groups:    x, A    x, C    x, D    x, y
Allowed substitution hints:    A( y)    B( x, y)    C( y)    D( y)    V( x, y)    W( x, y)

Proof of Theorem csbco3gOLD
StepHypRef Expression
1 csbco3g.1 . . 3  |-  ( x  =  A  ->  B  =  D )
21csbco3g 3138 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ D  /  y ]_ C )
32adantr 451 1  |-  ( ( A  e.  V  /\  A. x  B  e.  W
)  ->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  [_ D  /  y ]_ C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   [_csb 3081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082
  Copyright terms: Public domain W3C validator