Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbdmg Unicode version

Theorem csbdmg 28085
Description: Distribute proper substitution through the domain of a class. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
csbdmg  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )

Proof of Theorem csbdmg
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3155 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B } )
2 sbcexg 3054 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w [. A  /  x ]. <. y ,  w >.  e.  B ) )
3 sbcel2g 3115 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. y ,  w >.  e.  B  <->  <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1616 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e. 
[_ A  /  x ]_ B ) )
52, 4bitrd 244 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
65abbidv 2410 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
71, 6eqtrd 2328 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
8 dfdm3 4883 . . 3  |-  dom  B  =  { y  |  E. w <. y ,  w >.  e.  B }
98csbeq2i 3120 . 2  |-  [_ A  /  x ]_ dom  B  =  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }
10 dfdm3 4883 . 2  |-  dom  [_ A  /  x ]_ B  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2353 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   [.wsbc 3004   [_csb 3094   <.cop 3656   dom cdm 4705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-sbc 3005  df-csb 3095  df-br 4040  df-dm 4715
  Copyright terms: Public domain W3C validator