MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2d Unicode version

Theorem csbeq2d 3105
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1  |-  F/ x ph
csbeq2d.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
csbeq2d  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4  |-  F/ x ph
2 csbeq2d.2 . . . . 5  |-  ( ph  ->  B  =  C )
32eleq2d 2350 . . . 4  |-  ( ph  ->  ( y  e.  B  <->  y  e.  C ) )
41, 3sbcbid 3044 . . 3  |-  ( ph  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2397 . 2  |-  ( ph  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3082 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3082 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2340 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1531    = wceq 1623    e. wcel 1684   {cab 2269   [.wsbc 2991   [_csb 3081
This theorem is referenced by:  csbeq2dv  3106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-sbc 2992  df-csb 3082
  Copyright terms: Public domain W3C validator