MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2d Unicode version

Theorem csbeq2d 3118
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1  |-  F/ x ph
csbeq2d.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
csbeq2d  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4  |-  F/ x ph
2 csbeq2d.2 . . . . 5  |-  ( ph  ->  B  =  C )
32eleq2d 2363 . . . 4  |-  ( ph  ->  ( y  e.  B  <->  y  e.  C ) )
41, 3sbcbid 3057 . . 3  |-  ( ph  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2410 . 2  |-  ( ph  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3095 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3095 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2353 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1534    = wceq 1632    e. wcel 1696   {cab 2282   [.wsbc 3004   [_csb 3094
This theorem is referenced by:  csbeq2dv  3119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-sbc 3005  df-csb 3095
  Copyright terms: Public domain W3C validator