MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv12g Unicode version

Theorem csbfv12g 5535
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbfv12g  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbiotag 5248 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( iota y B F y )  =  ( iota y [. A  /  x ]. B F y ) )
2 sbcbrg 4072 . . . . 5  |-  ( A  e.  C  ->  ( [. A  /  x ]. B F y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ y
) )
3 csbconstg 3095 . . . . . 6  |-  ( A  e.  C  ->  [_ A  /  x ]_ y  =  y )
43breq2d 4035 . . . . 5  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ B [_ A  /  x ]_ F [_ A  /  x ]_ y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
52, 4bitrd 244 . . . 4  |-  ( A  e.  C  ->  ( [. A  /  x ]. B F y  <->  [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
65iotabidv 5240 . . 3  |-  ( A  e.  C  ->  ( iota y [. A  /  x ]. B F y )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
71, 6eqtrd 2315 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( iota y B F y )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F y ) )
8 df-fv 5263 . . 3  |-  ( F `
 B )  =  ( iota y B F y )
98csbeq2i 3107 . 2  |-  [_ A  /  x ]_ ( F `
 B )  = 
[_ A  /  x ]_ ( iota y B F y )
10 df-fv 5263 . 2  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  ( iota y [_ A  /  x ]_ B [_ A  /  x ]_ F
y )
117, 9, 103eqtr4g 2340 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   [.wsbc 2991   [_csb 3081   class class class wbr 4023   iotacio 5217   ` cfv 5255
This theorem is referenced by:  csbfv2g  5537  cdlemk42  31130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator