Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv12g Structured version   Unicode version

Theorem csbfv12g 5730
 Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbfv12g

Proof of Theorem csbfv12g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbiotag 5439 . . 3
2 sbcbrg 4253 . . . . 5
3 csbconstg 3257 . . . . . 6
43breq2d 4216 . . . . 5
52, 4bitrd 245 . . . 4
65iotabidv 5431 . . 3
71, 6eqtrd 2467 . 2
8 df-fv 5454 . . 3
98csbeq2i 3269 . 2
10 df-fv 5454 . 2
117, 9, 103eqtr4g 2492 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  wsbc 3153  csb 3243   class class class wbr 4204  cio 5408  cfv 5446 This theorem is referenced by:  csbfv2g  5732  cdlemk42  31675 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454
 Copyright terms: Public domain W3C validator