Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbid Structured version   Unicode version

Theorem csbid 3274
 Description: Analog of sbid 1950 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
csbid

Proof of Theorem csbid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3268 . 2
2 sbcid 3183 . . 3
32abbii 2554 . 2
4 abid2 2559 . 2
51, 3, 43eqtri 2466 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   wcel 1727  cab 2428  wsbc 3167  csb 3267 This theorem is referenced by:  csbeq1a  3275  fvmpt2i  5840  disji2f  24050  disjif2  24054  disjabrex  24055  disjabrexf  24056  fvmpt2f  24103  measiuns  24602  fphpd  26915 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-sbc 3168  df-csb 3268
 Copyright terms: Public domain W3C validator