Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2 Structured version   Unicode version

Theorem csbie2 3297
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
Hypotheses
Ref Expression
csbie2t.1
csbie2t.2
csbie2.3
Assertion
Ref Expression
csbie2
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem csbie2
StepHypRef Expression
1 csbie2.3 . . 3
21gen2 1557 . 2
3 csbie2t.1 . . 3
4 csbie2t.2 . . 3
53, 4csbie2t 3296 . 2
62, 5ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wceq 1653   wcel 1726  cvv 2957  csb 3252 This theorem is referenced by:  fsumcnv  12558  dfrhm2  15822  fprodcnv  25308  mamufval  27421 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-v 2959  df-sbc 3163  df-csb 3253
 Copyright terms: Public domain W3C validator