MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2t Structured version   Unicode version

Theorem csbie2t 3287
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3288). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1  |-  A  e. 
_V
csbie2t.2  |-  B  e. 
_V
Assertion
Ref Expression
csbie2t  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
)
Distinct variable groups:    x, y, A    x, B, y    x, D, y
Allowed substitution hints:    C( x, y)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 1806 . 2  |-  F/ x A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )
2 nfcvd 2572 . 2  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  F/_ x D )
3 csbie2t.1 . . 3  |-  A  e. 
_V
43a1i 11 . 2  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  A  e.  _V )
5 nfa2 1874 . . . 4  |-  F/ y A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )
6 nfv 1629 . . . 4  |-  F/ y  x  =  A
75, 6nfan 1846 . . 3  |-  F/ y ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )
8 nfcvd 2572 . . 3  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  F/_ y D )
9 csbie2t.2 . . . 4  |-  B  e. 
_V
109a1i 11 . . 3  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  B  e.  _V )
11 sp 1763 . . . . 5  |-  ( A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  (
( x  =  A  /\  y  =  B )  ->  C  =  D ) )
1211sps 1770 . . . 4  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  ( ( x  =  A  /\  y  =  B )  ->  C  =  D ) )
1312impl 604 . . 3  |-  ( ( ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  /\  y  =  B )  ->  C  =  D )
147, 8, 10, 13csbiedf 3280 . 2  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  [_ B  /  y ]_ C  =  D )
151, 2, 4, 14csbiedf 3280 1  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   _Vcvv 2948   [_csb 3243
This theorem is referenced by:  csbie2  3288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244
  Copyright terms: Public domain W3C validator