Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2t Structured version   Unicode version

Theorem csbie2t 3287
 Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3288). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1
csbie2t.2
Assertion
Ref Expression
csbie2t
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 1806 . 2
2 nfcvd 2572 . 2
3 csbie2t.1 . . 3
43a1i 11 . 2
5 nfa2 1874 . . . 4
6 nfv 1629 . . . 4
75, 6nfan 1846 . . 3
8 nfcvd 2572 . . 3
9 csbie2t.2 . . . 4
109a1i 11 . . 3
11 sp 1763 . . . . 5
1211sps 1770 . . . 4
1312impl 604 . . 3
147, 8, 10, 13csbiedf 3280 . 2
151, 2, 4, 14csbiedf 3280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wal 1549   wceq 1652   wcel 1725  cvv 2948  csb 3243 This theorem is referenced by:  csbie2  3288 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-sbc 3154  df-csb 3244
 Copyright terms: Public domain W3C validator