Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbieb Structured version   Unicode version

Theorem csbieb 3291
 Description: Bidirectional conversion between an implicit class substitution hypothesis and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1
csbieb.2
Assertion
Ref Expression
csbieb
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2
2 csbieb.2 . 2
3 csbiebt 3289 . 2
41, 2, 3mp2an 655 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550   wceq 1653   wcel 1726  wnfc 2561  cvv 2958  csb 3253 This theorem is referenced by:  csbiebg  3292 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-sbc 3164  df-csb 3254
 Copyright terms: Public domain W3C validator