MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiebt Structured version   Unicode version

Theorem csbiebt 3288
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3292.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2965 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 spsbc 3174 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
32adantr 453 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
4 simpl 445 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  A  e.  _V )
5 biimt 327 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  ( x  =  A  ->  B  =  C ) ) )
6 csbeq1a 3260 . . . . . . . 8  |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
76eqeq1d 2445 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  [_ A  /  x ]_ B  =  C ) )
85, 7bitr3d 248 . . . . . 6  |-  ( x  =  A  ->  (
( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
98adantl 454 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ x C )  /\  x  =  A )  ->  ( (
x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
10 nfv 1630 . . . . . 6  |-  F/ x  A  e.  _V
11 nfnfc1 2576 . . . . . 6  |-  F/ x F/_ x C
1210, 11nfan 1847 . . . . 5  |-  F/ x
( A  e.  _V  /\ 
F/_ x C )
13 nfcsb1v 3284 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ B
1413a1i 11 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x [_ A  /  x ]_ B )
15 simpr 449 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x C )
1614, 15nfeqd 2587 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/ x [_ A  /  x ]_ B  =  C )
174, 9, 12, 16sbciedf 3197 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [. A  /  x ]. ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
183, 17sylibd 207 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [_ A  /  x ]_ B  =  C
) )
1913a1i 11 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x [_ A  /  x ]_ B )
20 id 21 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x C )
2119, 20nfeqd 2587 . . . . . . 7  |-  ( F/_ x C  ->  F/ x [_ A  /  x ]_ B  =  C
)
2211, 21nfan1 1846 . . . . . 6  |-  F/ x
( F/_ x C  /\  [_ A  /  x ]_ B  =  C )
237biimprcd 218 . . . . . . 7  |-  ( [_ A  /  x ]_ B  =  C  ->  ( x  =  A  ->  B  =  C ) )
2423adantl 454 . . . . . 6  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  ( x  =  A  ->  B  =  C ) )
2522, 24alrimi 1782 . . . . 5  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  A. x ( x  =  A  ->  B  =  C ) )
2625ex 425 . . . 4  |-  ( F/_ x C  ->  ( [_ A  /  x ]_ B  =  C  ->  A. x
( x  =  A  ->  B  =  C ) ) )
2726adantl 454 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [_ A  /  x ]_ B  =  C  ->  A. x ( x  =  A  ->  B  =  C ) ) )
2818, 27impbid 185 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
291, 28sylan 459 1  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   F/_wnfc 2560   _Vcvv 2957   [.wsbc 3162   [_csb 3252
This theorem is referenced by:  csbiedf  3289  csbieb  3290  csbiegf  3292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-v 2959  df-sbc 3163  df-csb 3253
  Copyright terms: Public domain W3C validator