MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied2 Unicode version

Theorem csbied2 3124
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1  |-  ( ph  ->  A  e.  V )
csbied2.2  |-  ( ph  ->  A  =  B )
csbied2.3  |-  ( (
ph  /\  x  =  B )  ->  C  =  D )
Assertion
Ref Expression
csbied2  |-  ( ph  ->  [_ A  /  x ]_ C  =  D
)
Distinct variable groups:    x, A    ph, x    x, D
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2  |-  ( ph  ->  A  e.  V )
2 id 19 . . . 4  |-  ( x  =  A  ->  x  =  A )
3 csbied2.2 . . . 4  |-  ( ph  ->  A  =  B )
42, 3sylan9eqr 2337 . . 3  |-  ( (
ph  /\  x  =  A )  ->  x  =  B )
5 csbied2.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  C  =  D )
64, 5syldan 456 . 2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
71, 6csbied 3123 1  |-  ( ph  ->  [_ A  /  x ]_ C  =  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   [_csb 3081
This theorem is referenced by:  prdsval  13355  cidfval  13578  monfval  13635  idfuval  13750  isnat  13821  fucco  13836  catcval  13928  xpcval  13951  1stfval  13965  2ndfval  13968  prfval  13973  evlf2  13992  curfval  13997  hofval  14026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-csb 3082
  Copyright terms: Public domain W3C validator