MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiedf Unicode version

Theorem csbiedf 3131
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiedf.1  |-  F/ x ph
csbiedf.2  |-  ( ph  -> 
F/_ x C )
csbiedf.3  |-  ( ph  ->  A  e.  V )
csbiedf.4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
csbiedf  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)    V( x)

Proof of Theorem csbiedf
StepHypRef Expression
1 csbiedf.1 . . 3  |-  F/ x ph
2 csbiedf.4 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
32ex 423 . . 3  |-  ( ph  ->  ( x  =  A  ->  B  =  C ) )
41, 3alrimi 1757 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  B  =  C ) )
5 csbiedf.3 . . 3  |-  ( ph  ->  A  e.  V )
6 csbiedf.2 . . 3  |-  ( ph  -> 
F/_ x C )
7 csbiebt 3130 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
85, 6, 7syl2anc 642 . 2  |-  ( ph  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
94, 8mpbid 201 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   F/wnf 1534    = wceq 1632    e. wcel 1696   F/_wnfc 2419   [_csb 3094
This theorem is referenced by:  csbied  3136  csbie2t  3138  natpropd  13866  fucpropd  13867  sumsnd  27800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-sbc 3005  df-csb 3095
  Copyright terms: Public domain W3C validator