![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbief | Unicode version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbief.1 |
![]() ![]() ![]() ![]() |
csbief.2 |
![]() ![]() ![]() ![]() |
csbief.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
csbief |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbief.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | csbief.2 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | csbief.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | csbiegf 3251 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | ax-mp 8 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: csbing 3508 csbifg 3727 csbopabg 4243 pofun 4479 csbima12g 5172 csbiotag 5406 csbovg 6071 csbriotag 6521 eqerlem 6896 fsum 12469 fsumcnv 12512 fsumshftm 12519 fsum0diag2 12521 ruclem1 12785 pcmpt 13216 odval 15127 psrass1lem 16397 iundisj2 19396 isibl 19610 dfitg 19614 dvfsumlem2 19864 mpfrcl 19892 fsumdvdsmul 20933 disjxpin 23981 iundisj2f 23983 iundisj2fi 24106 fprod 25220 fprodcnv 25260 bpolyval 25999 fphpd 26767 monotuz 26894 oddcomabszz 26897 fnwe2val 27014 fnwe2lem1 27015 mamufval 27311 csbafv12g 27868 csbaovg 27911 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2385 |
This theorem depends on definitions: df-bi 178 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2391 df-cleq 2397 df-clel 2400 df-nfc 2529 df-v 2918 df-sbc 3122 df-csb 3212 |
Copyright terms: Public domain | W3C validator |