MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbima12gALT Unicode version

Theorem csbima12gALT 5147
Description: Move class substitution in and out of the image of a function. (This is csbima12g 5146 with a shortened proof, shortened by Alan Sare, 10-Nov-2012.) The proof is derived from the virtual deduction proof csbima12gALTVD 28343. Although the proof is shorter, the total number of steps of all theorems used in the proof is probably longer. (Contributed by NM, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbima12gALT  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )

Proof of Theorem csbima12gALT
StepHypRef Expression
1 csbrng 5047 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  [_ A  /  x ]_ ( F  |`  B ) )
2 csbresg 5082 . . . 4  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F  |`  B )  =  (
[_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) )
32rneqd 5030 . . 3  |-  ( A  e.  C  ->  ran  [_ A  /  x ]_ ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |` 
[_ A  /  x ]_ B ) )
41, 3eqtrd 2412 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ ran  ( F  |`  B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B ) )
5 df-ima 4824 . . 3  |-  ( F
" B )  =  ran  ( F  |`  B )
65csbeq2i 3213 . 2  |-  [_ A  /  x ]_ ( F
" B )  = 
[_ A  /  x ]_ ran  ( F  |`  B )
7 df-ima 4824 . 2  |-  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ B )  =  ran  ( [_ A  /  x ]_ F  |`  [_ A  /  x ]_ B )
84, 6, 73eqtr4g 2437 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" B )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   [_csb 3187   ran crn 4812    |` cres 4813   "cima 4814
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-br 4147  df-opab 4201  df-xp 4817  df-cnv 4819  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824
  Copyright terms: Public domain W3C validator