Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbing Structured version   Unicode version

Theorem csbing 3540
 Description: Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbing

Proof of Theorem csbing
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3246 . . 3
2 csbeq1 3246 . . . 4
3 csbeq1 3246 . . . 4
42, 3ineq12d 3535 . . 3
51, 4eqeq12d 2449 . 2
6 vex 2951 . . 3
7 nfcsb1v 3275 . . . 4
8 nfcsb1v 3275 . . . 4
97, 8nfin 3539 . . 3
10 csbeq1a 3251 . . . 4
11 csbeq1a 3251 . . . 4
1210, 11ineq12d 3535 . . 3
136, 9, 12csbief 3284 . 2
145, 13vtoclg 3003 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  csb 3243   cin 3311 This theorem is referenced by:  csbresg  5141  disjxpin  24020  onfrALTlem5  28555  onfrALTlem4  28556  onfrALTlem5VD  28924  onfrALTlem4VD  28925  csbresgVD  28934 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-in 3319
 Copyright terms: Public domain W3C validator