MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnegg Structured version   Unicode version

Theorem csbnegg 9295
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 6107 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( 0  -  B )  =  ( 0  -  [_ A  /  x ]_ B
) )
2 df-neg 9286 . . 3  |-  -u B  =  ( 0  -  B )
32csbeq2i 3269 . 2  |-  [_ A  /  x ]_ -u B  =  [_ A  /  x ]_ ( 0  -  B
)
4 df-neg 9286 . 2  |-  -u [_ A  /  x ]_ B  =  ( 0  -  [_ A  /  x ]_ B
)
51, 3, 43eqtr4g 2492 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   [_csb 3243  (class class class)co 6073   0cc0 8982    - cmin 9283   -ucneg 9284
This theorem is referenced by:  dvfsum2  19910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-neg 9286
  Copyright terms: Public domain W3C validator